900 resultados para three-body problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract In this paper we study numerically a new type of central configurations of the 3n-body problem with equal masses which consist of three n-gons contained in three planes z = 0 and z = ±β = 0. The n-gon on z = 0 is scaled by a factor α and it is rotated by an angle of π/n with respect to the ones on z = ±β. In this kind of configurations, the masses on the planes z = 0 and z = β are at the vertices of an antiprism with bases of different size. The same occurs with the masses on z = 0 and z = −β. We call this kind of central configurations double-antiprism central configurations. We will show the existence of central configurations of this type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the relative equilibria of the limit case of the pla- nar Newtonian 4{body problem when three masses tend to zero, the so-called (1 + 3){body problem. Depending on the values of the in- nitesimal masses the number of relative equilibria varies from ten to fourteen. Always six of these relative equilibria are convex and the oth- ers are concave. Each convex relative equilibrium of the (1 + 3){body problem can be continued to a unique family of relative equilibria of the general 4{body problem when three of the masses are su ciently small and every convex relative equilibrium for these masses belongs to one of these six families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show the existence of new families of spatial central configurations for the n + 3-body problem, n >= 3. We study spatial central configurations where n bodies are at the vertices of a regular n-gon T and the other three bodies are symmetrically located on the straight line that is perpendicular to the plane that contains T and passes through the center of T. The results have simple and analytic proofs. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we show the existence of three new families of stacked spatial central configurations for the six-body problem with the following properties: four bodies are at the vertices of a regular tetrahedron and the other two bodies are on a line connecting one vertex of the tetrahedron with the center of the opposite face. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-energy muon-transfer cross sections and rates in collisions of muonic atoms with hydrogen isotopes are calculated using a six-state close-coupling approximation to coordinate-space Faddeev-Hahn-type equations. In the muonic case satisfactory results are obtained for all hydrogen isotopes and the experimentaly observed strong isotopic dependence of transfer rates is also reproduced. A comparison with results of other theoretical and available experimental works is presented. The present model also leads to good transfer cross sections in the well-understood problem of antihydrogen formation in antiproton-positronium collision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EDROMO is a special perturbation method for the propagation of elliptical orbits in the perturbed two-body problem. The state vector consists of a time-element and seven spatial elements, and the independent variable is a generalized eccentric anomaly introduced through a Sundman time transformation. The key role in the derivation of the method is played by an intermediate reference frame which enjoys the property of remaining fixed in space as long as perturbations are absent. Three elements of EDROMO characterize the dynamics in the orbital frame and its orientation with respect to the intermediate frame, and the Euler parameters associated to the intermediate frame represent the other four spatial elements. The performance of EDromo has been analyzed by considering some typical problems in astrodynamics. In almost all our tests the method is the best among other popular formulations based on elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schrödinger’s equation of a three-body system is a linear partial differential equation (PDE) defined on the 9-dimensional configuration space, ℝ9, naturally equipped with Jacobi’s kinematic metric and with translational and rotational symmetries. The natural invariance of Schrödinger’s equation with respect to the translational symmetry enables us to reduce the configuration space to that of a 6-dimensional one, while that of the rotational symmetry provides the quantum mechanical version of angular momentum conservation. However, the problem of maximizing the use of rotational invariance so as to enable us to reduce Schrödinger’s equation to corresponding PDEs solely defined on triangular parameters—i.e., at the level of ℝ6/SO(3)—has never been adequately treated. This article describes the results on the orbital geometry and the harmonic analysis of (SO(3),ℝ6) which enable us to obtain such a reduction of Schrödinger’s equation of three-body systems to PDEs solely defined on triangular parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is argued that the common classification of abrasive wear into 'two-body abrasion' and 'three-body abrasion' is seriously flawed. No definitions have been agreed upon for these terms, and indeed there are two quite different interpretations, the implications of which are mutually inconsistent. In the dominant interpretation, the primary thrust of the two-body/three-body concept is to describe whether the abrasive particles are constrained (two-body) or free to roll (three-body). In this view, two-body abrasion is generally much more severe than three-body. The alternative interpretation emphasises the presence (three-body) or absence (two-body) of a rigid counterface backing the abrasive. In this view, three-body abrasion is equated to high-stress (or grinding) abrasion and is generally more severe than two-body (low-stress) abrasion. This paper recommends that the 'two-body/three-body' terminology be abandoned, to be replaced by an alternative classification scheme based directly upon the manifest severity of wear. (C) 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the continuation method we prove that the circular and the elliptic symmetric periodic orbits of the planar rotating Kepler problem can be continued into periodic orbits of the planar collision restricted 3–body problem. Additionally, we also continue to this restricted problem the so called “comets orbits”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper is devoted to the study of a type of differential systems which appear usually in the study of some Hamiltonian systems with 2 degrees of freedom. We prove the existence of infinitely many periodic orbits on each negative energy level. All these periodic orbits pass near the total collision. Finally we apply these results to study the existence of periodic orbits in the charged collinear 3–body problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We start with a generalization of the well-known three-door problem:the n-door problem. The solution of this new problem leads us toa beautiful representation system for real numbers in (0,1] as alternated series, known in the literature as Pierce expansions. A closer look to Pierce expansions will take us to some metrical properties of sets defined through the Pierce expansions of its elements. Finally, these metrical properties will enable us to present 'strange' sets, similar to the classical Cantor set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the n{body problem a central con guration is formed when the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration vector. Lindstrom showed for n = 3 and for n > 4 that if n ? 1 masses are located at xed points in the plane, then there are only a nite number of ways to position the remaining nth mass in such a way that they de ne a central con guration. Lindstrom leaves open the case n = 4. In this paper we prove the case n = 4 using as variables the mutual distances between the particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. In this paper we prove the existence of central con gurations of the n + 2{body problem where n equal masses are located at the vertices of a regular n{gon and the remaining 2 masses, which are not necessarily equal, are located on the straight line orthogonal to the plane containing the n{gon passing through its center. Here this kind of central con gurations is called bi{pyramidal central con gurations. In particular, we prove that if the masses mn+1 and mn+2 and their positions satisfy convenient relations, then the con guration is central. We give explicitly those relations.