Bifurcation of relative equilibria of the (1+3)-body problem
| Contribuinte(s) |
Universitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia |
|---|---|
| Data(s) |
2015
|
| Resumo |
We study the relative equilibria of the limit case of the pla- nar Newtonian 4{body problem when three masses tend to zero, the so-called (1 + 3){body problem. Depending on the values of the in- nitesimal masses the number of relative equilibria varies from ten to fourteen. Always six of these relative equilibria are convex and the oth- ers are concave. Each convex relative equilibrium of the (1 + 3){body problem can be continued to a unique family of relative equilibria of the general 4{body problem when three of the masses are su ciently small and every convex relative equilibrium for these masses belongs to one of these six families. |
| Formato |
33 p. |
| Identificador | |
| Idioma(s) |
eng |
| Publicador |
Society for Industrial and Applied Mathematics |
| Direitos |
Tots els drets reservats (c) Society for Industrial and Applied Mathematics |
| Palavras-Chave | #Matemàtica |
| Tipo |
info:eu-repo/semantics/article |