Bifurcation of relative equilibria of the (1+3)-body problem


Autoria(s): Corbera Subirana, Montserrat; Cors Iglesias, Josep Maria; Llibre, Jaume; Moeckel, Richard
Contribuinte(s)

Universitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia

Data(s)

2015

Resumo

We study the relative equilibria of the limit case of the pla- nar Newtonian 4{body problem when three masses tend to zero, the so-called (1 + 3){body problem. Depending on the values of the in- nitesimal masses the number of relative equilibria varies from ten to fourteen. Always six of these relative equilibria are convex and the oth- ers are concave. Each convex relative equilibrium of the (1 + 3){body problem can be continued to a unique family of relative equilibria of the general 4{body problem when three of the masses are su ciently small and every convex relative equilibrium for these masses belongs to one of these six families.

Formato

33 p.

Identificador

http://hdl.handle.net/10854/4046

Idioma(s)

eng

Publicador

Society for Industrial and Applied Mathematics

Direitos

Tots els drets reservats

(c) Society for Industrial and Applied Mathematics

Palavras-Chave #Matemàtica
Tipo

info:eu-repo/semantics/article