499 resultados para thermoplastic, electrospinning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injection velocity has been recognized as a key variable in thermoplastic injection molding. Its closed-loop control is, however, difficult due to the complexity of the process dynamic characteristics. The basic requirements of the control system include tracking of a pre-determined injection velocity curve defined in a profile, load rejection and robustness. It is difficult for a conventional control scheme to meet all these requirements. Injection velocity dynamics are first analyzed in this paper. Then a novel double-controller scheme is adopted for the injection velocity control. This scheme allows an independent design of set-point tracking and load rejection and has good system robustness. The implementation of the double-controller scheme for injection velocity control is discussed. Special techniques such as profile transformation and shifting are also introduced to improve the velocity responses. The proposed velocity control has been experimentally demonstrated to be effective for a wide range of processing conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis has developed an innovative additive manufacturing technology platform, which combines melt electrospinning with direct writing, allowing the fabrication of a new class of highly-ordered ultrafine fibrous materials. Bioresorbable polymer fibres were printed using a variety of designs, with filament resolutions not demonstrated by established melt-extrusion based direct writing processes, to form novel medical devices. This platform was applied to tissue engineering scaffold design, where structures were prepared in a variety of shapes and forms, characterised and then seeded with cells to investigate their biocompatibility, cell-seeding and proliferation behaviour as well as the ability to guide cell growth and differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt electrospinning and its additive manufacturing analogue, melt electrospinning writing (MEW), are two processes which can produce porous materials for applications where solvent toxicity and accumulation in solution electrospinning are problematic. This study explores the melt electrospinning of poly(ε-caprolactone) (PCL) scaffolds, specifically for applications in tissue engineering. The research described here aims to inform researchers interested in melt electrospinning about technical aspects of the process. This includes rapid fiber characterization using glass microscope slides, allowing influential processing parameters on fiber morphology to be assessed, as well as observed fiber collection phenomena on different collector substrates. The distribution and alignment of melt electrospun PCL fibers can be controlled to a certain degree using patterned collectors to create large numbers of scaffolds with shaped macroporous architectures. However, the buildup of residual charge in the collected fibers limits the achievable thickness of the porous template through such scaffolds. One challenge identified for MEW is the ability to control charge buildup so that fibers can be placed accurately in close proximity, and in many centimeter heights. The scale and size of scaffolds produced using MEW, however, indicate that this emerging process will fill a technological niche in biofabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, fibers of barbed wire structure were obtained by electrospinning blend of organic conducting crystalline material and polyethylene oxide. Thermal and structural characterization of the blend fibers has been carried out to study the fiber characteristics. An increase in crystallinity in the electrospun fibers was observed and was attributed to both electrospinning process as well as addition of organic conducting crystalline material. A mechanism for the formation of this barbed wire structure has also been proposed. (C) 2012 American Institute of Physics. [doi:10.1063/1.3673620]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bio-nanocomposites have been developed using cross-linked chitosan and cross-linked thermoplastic starch along with acid functionalized multiwalled carbon nanotubes (f-MWCNT). The nanocomposites developed were characterized for mechanical, wear, and thermal properties. The results revealed that the nanocomposites exhibited enhanced mechanical properties. The composites containing 3% f-MWCNT showed maximum compression strength. Tribological studies revealed that, with the addition of small amount of f-MWCNTs the slide wear loss reduced up to 25%. SEM analysis of the nanocomposites showed predominantly brittle fractured surface. Thermal analysis showed that the incorporation of f-MWCNTs has improved the thermal stability for the nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylindrical specimens (4 mm diameter and 4 mm height) of titanium alloy bar were given various heat treatments to provide a wide range of microstructures and mechanical parameters. These specimens were then subjected to high plastic strain at a large strain rate (103 s-1 ) during dynamic compression by a split Hopkinson bar at ambient temperature. The microstructures of the localised shear bands were examined by optical and transmission electron microscopy. The results show that there are two types of localised shear bands: deformed and white shear bands. A detailed observation reveals that there is no difference in the nature of the deformed and white shear bands, but they occur at different stages of localised deformation. It is found that there is a burst of strain, corresponding to a critical strain rate at which the white shear band occurs and no phase transformation occurs in the shear bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The localized shear deformation in the 2024 and 2124 Al matrix composites reinforced with SiC particles was investigated with a split Hopkinson pressure bar (SHPB) at a strain rate of about 2.0x10(3) s(-1). The results showed that the occurrence of localized shear deformation is sensitive to the size of SiC particles. It was found that the critical strain, at which the shear localization occurs, strongly depends on the size and volume fraction of SiC particles. The smaller the particle size, the lower the critical strain required for the shear localization. TEM examinations revealed that Al/SiCp interfaces are the main sources of dislocations. The dislocation density near the interface was found to be high and it decreases with the distance from the particles. The Al matrix in shear bands was highly deformed and severely elongated at low angle boundaries. The Al/SiCp interfaces, particularly the sharp corners of SiC particles, provide the sites for microcrack initiation. Eventual fracture is caused by the growth and coalescence of microcracks along the shear bands. It is proposed that the distortion free equiaxed grains with low dislocation density observed in the center of shear band result from recrystallization during dynamic deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag nanoparticle embedded NaYF4:0.05Tb center dot chi Ce/ PVP (PVP stands for poly(vinyl pyrrolidone)) composite nanofibers have been prepared by electrospinning. A field emission scanning electron microscope and x-ray diffraction have been utilized to characterize the size, morphology and structure of the as-prepared electrospun nanofibers. Obvious photoluminescence (PL) of NaYF4:0.05Tb center dot 0.05Ce/PVP electrospun nanofibers due to the efficient energy transfer from Ce3+ to Tb3+ ions is observed. The PL intensity of the electrospun nanofibers decreases gradually with the addition of Ag nanoparticles. No obvious surface plasmon resonance enhanced luminescence is observed. The reasons for the weakening of the emission intensity with the addition of Ag nanoparticles have also been discussed in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This paper reports an innovative technique for reagents storage in microfluidic devices by means of a one-step UV-photoprintable ionogel-based microarray on non-modified polymeric substrates. Although the ionogel and the ink-jet printing technology are well published, this is the first study where both are used for long-term reagent storage in lab-on-a-chip devices. This technology for reagent storage is perfectly compatible with mass production fabrication processes since pre-treatment of the device substrate is not necessary and inkjet printing allows for an efficient reagent deposition process. The functionality of this microarray is demonstrated by testing the release of biotin-647 after being stored for 1 month at room temperature. Analysis of the fluorescence of the ionogel-based microarray that contains biotin-647 demonstrated that 90% of the biotin-647 present was released from the ionogel-based microarray after pumping PBS 0.1% Tween at 37 °C. Moreover, the activity of biotin-647 after being released from the ionogel-based microarray was investigated trough the binding capability of this biotin to a microcontact printed chip surface with avidin. These findings pave the way for a novel, one-step, cheap and mass production on-chip reagents storage method applicable to other reagents such as antibodies and proteins and enzymes.