984 resultados para theoretical physics
Resumo:
In a microscopic setting, humans behave in rich and unexpected ways. In a macroscopic setting, however, distinctive patterns of group behavior emerge, leading statistical physicists to search for an underlying mechanism. The aim of this dissertation is to analyze the macroscopic patterns of competing ideas in order to discern the mechanics of how group opinions form at the microscopic level. First, we explore the competition of answers in online Q&A (question and answer) boards. We find that a simple individual-level model can capture important features of user behavior, especially as the number of answers to a question grows. Our model further suggests that the wisdom of crowds may be constrained by information overload, in which users are unable to thoroughly evaluate each answer and therefore tend to use heuristics to pick what they believe is the best answer. Next, we explore models of opinion spread among voters to explain observed universal statistical patterns such as rescaled vote distributions and logarithmic vote correlations. We introduce a simple model that can explain both properties, as well as why it takes so long for large groups to reach consensus. An important feature of the model that facilitates agreement with data is that individuals become more stubborn (unwilling to change their opinion) over time. Finally, we explore potential underlying mechanisms for opinion formation in juries, by comparing data to various types of models. We find that different null hypotheses in which jurors do not interact when reaching a decision are in strong disagreement with data compared to a simple interaction model. These findings provide conceptual and mechanistic support for previous work that has found mutual influence can play a large role in group decisions. In addition, by matching our models to data, we are able to infer the time scales over which individuals change their opinions for different jury contexts. We find that these values increase as a function of the trial time, suggesting that jurors and judicial panels exhibit a kind of stubbornness similar to what we include in our model of voting behavior.
Resumo:
本文章辩论,在 Simmelian (齐美尔联) 的线之间,民主理论即可能产生实际和普遍理论, 像类似理论物理学的发展。这篇文章背后的推理是要表明,”基层民主“的理论比较于爱因斯坦的狭义相对论可能是实在- 特别关于对称,统一,简单和实用的参数。 这些参数不仅适应当前的知识, 也是作为物理理论的成分之一, 但也产生对测试(应用程序)的路径。一旦“基本的民主“的理论满足这些参数,它可以解决民主定义的争论。首先, 将讨论“基层民主“的理论是什么及为什么它不同于以往的作品;第二,通过解释选择的参数(如为什么这些,而不是其他的证实或天窗理论);第三,通过比较狭义相对论及”基层民主“理论如何符合这些参数。
Resumo:
An identity satisfied by the harmonic oscillator (Talmi-Moshinsky) brackets is derived from two equivalent methods for evaluating an integral often encountered in cluster model studies.
Resumo:
We study the probability distribution of the angle by which the tangent to the trajectory rotates in the course of a plane random walk. It is shown that the determination of this distribution function can be reduced to an integral equation, which can be rigorously transformed into a differential equation of Hill's type. We derive the asymptotic distribution for very long walks.
Resumo:
The Inönü-Wigner contractions which interrelate the Lie algebras of the isometry groups of metric spaces are discussed with reference to deformations of the absolutes of the spaces. A general formula is derived for the Lie algebra commutation relations of the isometry group for anyN-dimensional metric space. These ideas are illustrated by a discussion of important particular cases, which interrelate the four-dimensional de Sitter, Poincaré, and Galilean groups.
Resumo:
There exists various suggestions for building a functional and a fault-tolerant large-scale quantum computer. Topological quantum computation is a more exotic suggestion, which makes use of the properties of quasiparticles manifest only in certain two-dimensional systems. These so called anyons exhibit topological degrees of freedom, which, in principle, can be used to execute quantum computation with intrinsic fault-tolerance. This feature is the main incentive to study topological quantum computation. The objective of this thesis is to provide an accessible introduction to the theory. In this thesis one has considered the theory of anyons arising in two-dimensional quantum mechanical systems, which are described by gauge theories based on so called quantum double symmetries. The quasiparticles are shown to exhibit interactions and carry quantum numbers, which are both of topological nature. Particularly, it is found that the addition of the quantum numbers is not unique, but that the fusion of the quasiparticles is described by a non-trivial fusion algebra. It is discussed how this property can be used to encode quantum information in a manner which is intrinsically protected from decoherence and how one could, in principle, perform quantum computation by braiding the quasiparticles. As an example of the presented general discussion, the particle spectrum and the fusion algebra of an anyon model based on the gauge group S_3 are explicitly derived. The fusion algebra is found to branch into multiple proper subalgebras and the simplest one of them is chosen as a model for an illustrative demonstration. The different steps of a topological quantum computation are outlined and the computational power of the model is assessed. It turns out that the chosen model is not universal for quantum computation. However, because the objective was a demonstration of the theory with explicit calculations, none of the other more complicated fusion subalgebras were considered. Studying their applicability for quantum computation could be a topic of further research.
Resumo:
Our present-day understanding of fundamental constituents of matter and their interactions is based on the Standard Model of particle physics, which relies on quantum gauge field theories. On the other hand, the large scale dynamical behaviour of spacetime is understood via the general theory of relativity of Einstein. The merging of these two complementary aspects of nature, quantum and gravity, is one of the greatest goals of modern fundamental physics, the achievement of which would help us understand the short-distance structure of spacetime, thus shedding light on the events in the singular states of general relativity, such as black holes and the Big Bang, where our current models of nature break down. The formulation of quantum field theories in noncommutative spacetime is an attempt to realize the idea of nonlocality at short distances, which our present understanding of these different aspects of Nature suggests, and consequently to find testable hints of the underlying quantum behaviour of spacetime. The formulation of noncommutative theories encounters various unprecedented problems, which derive from their peculiar inherent nonlocality. Arguably the most serious of these is the so-called UV/IR mixing, which makes the derivation of observable predictions especially hard by causing new tedious divergencies, to which our previous well-developed renormalization methods for quantum field theories do not apply. In the thesis I review the basic mathematical concepts of noncommutative spacetime, different formulations of quantum field theories in the context, and the theoretical understanding of UV/IR mixing. In particular, I put forward new results to be published, which show that also the theory of quantum electrodynamics in noncommutative spacetime defined via Seiberg-Witten map suffers from UV/IR mixing. Finally, I review some of the most promising ways to overcome the problem. The final solution remains a challenge for the future.
Resumo:
The efforts of combining quantum theory with general relativity have been great and marked by several successes. One field where progress has lately been made is the study of noncommutative quantum field theories that arise as a low energy limit in certain string theories. The idea of noncommutativity comes naturally when combining these two extremes and has profound implications on results widely accepted in traditional, commutative, theories. In this work I review the status of one of the most important connections in physics, the spin-statistics relation. The relation is deeply ingrained in our reality in that it gives us the structure for the periodic table and is of crucial importance for the stability of all matter. The dramatic effects of noncommutativity of space-time coordinates, mainly the loss of Lorentz invariance, call the spin-statistics relation into question. The spin-statistics theorem is first presented in its traditional setting, giving a clarifying proof starting from minimal requirements. Next the notion of noncommutativity is introduced and its implications studied. The discussion is essentially based on twisted Poincaré symmetry, the space-time symmetry of noncommutative quantum field theory. The controversial issue of microcausality in noncommutative quantum field theory is settled by showing for the first time that the light wedge microcausality condition is compatible with the twisted Poincaré symmetry. The spin-statistics relation is considered both from the point of view of braided statistics, and in the traditional Lagrangian formulation of Pauli, with the conclusion that Pauli's age-old theorem stands even this test so dramatic for the whole structure of space-time.
Resumo:
Abstract is not available.
Resumo:
If a cosmological term is included in the equations of general relativity, the linearized equations can be interpreted as a tensor-scalar theory of finite-range gravitation. The scalar field cannot be transformed away be a gauge transformation (general co-ordinate transformation) and so must be interpreted as a physically significant degree of freedom. The hypothesis that a massive spin-two meson (mass m2) satisfied equations identical in form to the equations of general relativity leads to the prediction of a massive spin-zero meson (mass m0), the ratio of masses being m0 / m2 = 3*3.
Resumo:
A study of strong gravity field coupled to the Yukawa field is carried out for a conformally flat space-time. A quantitative relation between the strong interaction coupling constantg 2/hstrokc and the strong gravity constants (Lambda f~1028 cm–2,G f ~6.6×1030 C.G.S. units) is obtained givingg 2/hstroksim17, which is of the right order of magnitude. This justifies the contention that strong gravity is relevant for elementary particles (e.g., hadrons).
Resumo:
A new approach to Penrose's twistor algebra is given. It is based on the use of a generalised quaternion algebra for the translation of statements in projective five-space into equivalent statements in twistor (conformal spinor) space. The formalism leads toSO(4, 2)-covariant formulations of the Pauli-Kofink and Fierz relations among Dirac bilinears, and generalisations of these relations.
Resumo:
By making use of the fact that the de-Sitter metric corresponds to a hyperquadric in a five-dimensional flat space, it is shown that the three Robertson-Walker metrics for empty spacetime and positive cosmological constant, corresponding to 3-space of positive, negative and zero curvative, are geometrically equivalent. The 3-spaces correspond to intersections of the hyperquadric by hyperplanes, and the time-like geodesics perpendicular to them correspond to intersections by planes, in all three cases.
Resumo:
In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on global traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions.