945 resultados para tension of water on soil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-temperature reactivity of water (D2O) adsorbed on clean and oxygen pre-covered Cu(1 1 0) was studied using high resolution X-ray photoelectron spectroscopy (HRXPS) and low energy electron diffraction (LEED). On the clean surface partial dissociation to hydroxyl was observed already at 95 K. Upon annealing to 220 K hydrogen bonded water-hydroxyl chains are formed. Upon further annealing water desorbs leaving behind a layer of hydroxyl, most of which desorbs recombinatively eventually. With pre-adsorbed oxygen water reacts to hydroxyl lifting the added-row reconstruction even below 225 K. Upon annealing this adsorbate layer passes through essentially the same stages as without pre-adsorbed oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire is common in savannas but its effects on soil are poorly understood. We analyzed long-term effects of fire on surface soil of an open Brazilian savanna (campo sujo) in plots submitted to different fire regimes during 18 years. The five fire regimes were: unburned, quadrennial fires in middle dry season, and biennial fires in early, middle or late dry season. Soil was collected during the wet and the middle dry season of 2008, and analyzed for pH, organic matter, total N, potential acidity, exchangeable cations and available P, S, Mn, Cu, Zn and Fe. We applied multivariate analysis to search for patterns related to fire regimes, and to local climate, fuel, and fire behavior. Spearman test was used to establish correlations between soil variables and the multivariate analysis gradient structure. Seasonal differences were tested using t-test. We found evidence of long-term fire effects: the unburned plot was segregated mainly by lower soil pH; the quadrennial plot was also segregated by lower soil pH and higher amount of exchangeable cations; the time of burning during the dry season in biennial plots did not significantly affect soil availability of nutrients. Differences in elements amounts due to the season of soil sampling (wet or dry) were higher than due to the effect of fires. Higher availability of nutrients in the soil during the wet season was probably related to higher nutrient inputs via rainfall and higher microbial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The indiscriminate management and use of soils without moisture control has changed the structure of it due to the increment of the traffic by agricultural machines through the years, causing in consequence, a soil compaction and yield reduction in the areas of intensive traffic. The purpose of this work was to estimate and to evaluate the performance of preconsolidation pressure of the soil and shear stress as indicators of changes on soil structure in fields cropped with sugarcane, as well as the impact of management processes in an Eutrorthox soil structure located in São Paulo State. The experimental field was located in Piracicaba's rural area (São Paulo State, Brazil) and has been cropped with sugarcane, in the second harvest cycle. The soil was classified by Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) [Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 1999. Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificao de Solos, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Brasilia, 412 pp.] as an Eutrorthox. Undisturbed samples were collected and georeferenced in a grid of 60 m x 60 m from two depths: 0-0.10 m (superficial layer - SL) and in the layer of greatest mechanical resistance (LGMR), previously identified by cone index (CI). The investigated variables were pressure preconsolidation (sigma(p)), apparent cohesion (c) and internal friction angle (phi). The conclusions from the results were that the SLSC was predicted satisfactorily from up as a function of soil moisture; thus, decisions about machinery size and loading (contact pressures) can be taken. Apparent cohesion (c), internal friction angle (phi) and the Coulomb equation were significantly altered by traffic intensity. The sigma(p), c and phi maps were shown to be important tools to localize and visualize soil compaction and mechanical resistance zones. They constitute a valuable resource to evaluate the traffic impact in areas cropped with sugarcane in State of São Paulo, Brazil. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Counts of colony forming units of actinomycetes, bacteria and filamentous fungi were determined in cerrado soil treated with vinasse (processed sugar cane effluent) for 5 yr, using doses of 20 l m-2a-1 and 50 l m-2a-1. A temporary increase in the counts of actinomycetes and bacteria for some months after the addition of vinasse was observed. An increased number of fungi was detected throughout the experiment together with qualitative changes in the population. The most abundant fungi in cerrado soil not treated with vinasse (control soil) were Chaetomium, yeasts, Mucor, Penicillium and Trichoderma, while in vinasse treated soils, the same genera adding Verticillium, with the exception of yeasts, were the most common fungi. -Author

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promoting effect of water on the electrochemical reduction of carbon dioxide (CO2) from non-aqueous solvents has been studied by means of cyclic voltammetry and in-situ surface-enhanced infrared absorption spectroscopy (SEIRAS). CO2 electroreduction on gold is known to be highly selective towards CO formation in aqueous and in non-aqueous media. The use of non-aqueous solvents is advantageous due to the significantly increased solubility of CO2 compared to aqueous systems. However, in the absence of any proton source, extremely high overpotentials are required for the CO2 electroreduction. In this work, we demonstrate for the first time a tremendous accelerating effect of water additives on the electroreduction of CO2 taking place at gold/acetonitrile interfaces. Already moderate amounts of water, in the concentration range of 0.5 to 0.7 M, are sufficient to decrease significantly the overpotential of CO2 reduction while keeping the CO2 concentration as high as in the pure acetonitrile. The effect of water additives on the mechanism of CO2 electroreduction on gold is discussed on the basis of electrochemical and IR spectroscopic data. The results obtained from gold are compared to analogue experiments carried out on platinum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on several factors being one of them surface microtopography, usually quantified trough soil surface roughness (SSR). Surface soil porosity and SSR can be altered by tillage operation. Even though the surface porosity is an important parameter of a tilled field, however, no practical technique for rapid and non-contact measurement of surface porosity has been developed yet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth's upper mantle, mainly composed of olivine, is seismically anisotropic. Seismic anisotropy attenuation has been observed at 220km depth. Karato et al. (1992) attributed this attenuation to a transition between two deformation mechanisms, from dislocation creep above 220km to diffusion creep below 220km, induced by a change in water content. Couvy (2005) and Mainprice et al. (2005) predicted a change in Lattice Preferred Orientation induced by pressure, which comes from a change of slip system, from [100] slip to [001] slip, and is responsible for the seismic anisotropy attenuation. Raterron et al. (2007) ran single crystal deformation experiments under anhydrous conditions and observed that the slip system transition occurs around 8GPa, which corresponds to a depth of 260Km. Experiments were done to quantify the effects of water on olivine single crystals deformed using D-DIA press and synchrotron beam. Deformations were carried out in uniaxial compression along [110]c, [011]c, and [101]c, crystallographic directions, at pressure ranging from 4 to 8GPa and temperature between 1373 and 1473K. Talc sleeves about the annulus of the single crystals were used as source of water in the assembly. Stress and specimen strain rates were calculated by in-situ X-ray diffraction and time resolved imaging, respectively. By direct comparison of single crystals strain rates, we observed that [110]c deforms faster than [011]c below 5GPa. However above 6GPa [011]c deforms faster than [110]c. This revealed that [100](010) is the dominant slip system below 5GPa, and above 6GPa [001](010) becomes dominant. According to our results, the slip system transition, which is induced by pressure, occurs at 6GPa. Water influences the pressure where the switch over occurs, by lowering the transition pressure. The pressure effect on the slip systems activity has been quantified and the hydrolytic weakening has also been estimated for both orientations. Data also shows that temperature affects the slip system activity. The regional variation of the depth for the seismic anisotropy attenuation, which would depend on local hydroxyl content and temperature variations and explains the seismic anisotropy attenuation occurring at about 220Km depth in the mantle, where the pressure is about 6GPa. Deformation of MgO single crystal oriented [100], [110] and [111] were also performed. The results predict a change in the slip system activity at 23GPa, again induced by pressure. This explains the seismic anisotropy observed in the lower mantle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cultura do trigo, sob irrigação por aspersão ou sequeiro, vem sendo introduzida nos últimos anos no cerrado brasileiro. O objetivo do trabalho foi avaliar o efeito do manejo do solo e água nas características fenológicas e produtivas de cultivares de trigo, na região de cerrado. O estudo foi conduzido na área experimental da UNESP, localizada em Selvíria, MS. Adotou-se um delineamento experimental em blocos casualizados, num esquema fatorial, com quatro repetições, sendo as mesmas constituídas por dois manejos de solo (arado de aivecas e plantio direto), dois manejos de água (-0,05MPa e -0,07MPa) e três cultivares de trigo ('BRS 210', 'BR 18', 'IAC 24'). O plantio direto proporcionou maior rendimento de grãos de trigo em relação ao preparo do solo com arado de aivecas para as cultivares 'BRS 210' e 'BRS 18'. O manejo de água com tensão -0,05MPa foi o que proporcionou maior rendimento de grãos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant diversity has been shown to influence the water cycle of forest ecosystems by differences in water consumption and the associated effects on groundwater recharge. However, the effects of biodiversity on soil water fluxes remain poorly understood for native tree species plantations in the tropics. Therefore, we estimated soil water fluxes and assessed the effects of tree species and diversity on these fluxes in an experimental native tree species plantation in Sardinilla (Panama). The study was conducted during the wet season 2008 on plots of monocultures and mixtures of three or six tree species. Rainfall and soil water content were measured and evapotranspiration was estimated with the Penman-Monteith equation. Soil water fluxes were estimated using a simple soil water budget model considering water input, output, and soil water and groundwater storage changes and in addition, were simulated using the physically based one-dimensional water flow model Hydrus-1D. In general, the Hydrus simulation did not reflect the observed pressure heads, in that modeled pressure heads were higher compared to measured ones. On the other hand, the results of the water balance equation (WBE) reproduced observed water use patterns well. In monocultures, the downward fluxes through the 200 cm-depth plane were highest below Hura crepitans (6.13 mm day−1) and lowest below Luehea seemannii (5.18 mm day−1). The average seepage rate in monocultures (±SE) was 5.66 ± 0.18 mm day−1, and therefore, significantly higher than below six-species mixtures (5.49 ± 0.04 mm day−1) according to overyielding analyses. The three-species mixtures had an average seepage rate of 5.63 ± 0.12 mm day−1 and their values did not differ significantly from the average values of the corresponding species in monocultures. Seepage rates were driven by the transpiration of the varying biomass among the plots (r = 0.61, p = 0.017). Thus, a mixture of trees with different growth rates resulted in moderate seepage rates compared to monocultures of either fast growing or slow growing tree species. Our results demonstrate that tree-species specific biomass production and tree diversity are important controls of seepage rates in the Sardinilla plantation during the wet season.