983 resultados para tag


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tags or personal metadata for annotating web resources have been widely adopted in Web 2.0 sites. However, as tags are freely chosen by users, the vocabularies are diverse, ambiguous and sometimes only meaningful to individuals. Tag recommenders may assist users during tagging process. Its objective is to suggest relevant tags to use as well as to help consolidating vocabulary in the systems. In this paper we discuss our approach for providing personalized tag recommendation by making use of existing domain ontology generated from folksonomy. Specifically we evaluated the approach in sparse situation. The evaluation shows that the proposed ontology-based method has improved the accuracy of tag recommendation in this situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tag recommendation is a specific recommendation task for recommending metadata (tag) for a web resource (item) during user annotation process. In this context, sparsity problem refers to situation where tags need to be produced for items with few annotations or for user who tags few items. Most of the state of the art approaches in tag recommendation are rarely evaluated or perform poorly under this situation. This paper presents a combined method for mitigating sparsity problem in tag recommendation by mainly expanding and ranking candidate tags based on similar items’ tags and existing tag ontology. We evaluated the approach on two public social bookmarking datasets. The experiment results show better accuracy for recommendation in sparsity situation over several state of the art methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an exploration of customisation in online and mobile banking. It investigates the application of user-tags to facilitate customised interactions in desktop and mobile devices, and its impact on usability. The thesis through a comparative study explains that customisation can positively affect usability especially for younger users, leading to higher levels of satisfaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment tag>, should be appropriately modelled in order to create the user profiles [1]. Secondly, the semantics behind the tags should be considered properly as the flexibility with their design can cause semantic problems such as synonymy and polysemy [2]. This research proposes to address these two challenges for building a tag-based item recommendation system by employing tensor modeling as the multi-dimensional user profile approach, and the topic model as the semantic analysis approach. The first objective is to optimize the tensor model reconstruction and to improve the model performance in generating quality rec-ommendation. A novel Tensor-based Recommendation using Probabilistic Ranking (TRPR) method [3] has been developed. Results show this method to be scalable for large datasets and outperforming the benchmarking methods in terms of accuracy. The memory efficient loop implements the n-mode block-striped (matrix) product for tensor reconstruction as an approximation of the initial tensor. The probabilistic ranking calculates the probabil-ity of users to select candidate items using their tag preference list based on the entries generated from the reconstructed tensor. The second objective is to analyse the tag semantics and utilize the outcome in building the tensor model. This research proposes to investigate the problem using topic model approach to keep the tags nature as the “social vocabulary” [4]. For the tag assignment data, topics can be generated from the occurrences of tags given for an item. However there is only limited amount of tags availa-ble to represent items as collection of topics, since an item might have only been tagged by using several tags. Consequently, the generated topics might not able to represent the items appropriately. Furthermore, given that each tag can belong to any topics with various probability scores, the occurrence of tags cannot simply be mapped by the topics to build the tensor model. A standard weighting technique will not appropriately calculate the value of tagging activity since it will define the context of an item using a tag instead of a topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discounted Cumulative Gain (DCG) is a well-known ranking evaluation measure for models built with multiple relevance graded data. By handling tagging data used in recommendation systems as an ordinal relevance set of {negative,null,positive}, we propose to build a DCG based recommendation model. We present an efficient and novel learning-to-rank method by optimizing DCG for a recommendation model using the tagging data interpretation scheme. Evaluating the proposed method on real-world datasets, we demonstrate that the method is scalable and outperforms the benchmarking methods by generating a quality top-N item recommendation list.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single nucleotide polymorphisms (SNPs) are widely acknowledged as the marker of choice for many genetic and genomic applications because they show co-dominant inheritance, are highly abundant across genomes and are suitable for high-throughput genotyping. Here we evaluated the applicability of SNP markers developed from Crassostrea gigas and C. virginica expressed sequence tags (ESTs) in closely related Crassostrea and Ostrea species. A total of 213 putative interspecific level SNPs were identified from re-sequencing data in six amplicons, yielding on average of one interspecific level SNP per seven bp. High polymorphism levels were observed and the high success rate of transferability show that genic EST-derived SNP markers provide an efficient method for rapid marker development and SNP discovery in closely related oyster species. The six EST-SNP markers identified here will provide useful molecular tools for addressing questions in molecular ecology and evolution studies including for stock analysis (pedigree monitoring) in related oyster taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual's previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag-recapture data and tag-recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

James (1991, Biometrics 47, 1519-1530) constructed unbiased estimating functions for estimating the two parameters in the von Bertalanffy growth curve from tag-recapture data. This paper provides unbiased estimating functions for a class of growth models that incorporate stochastic components and explanatory variables. a simulation study using seasonal growth models indicates that the proposed method works well while the least-squares methods that are commonly used in the literature may produce substantially biased estimates. The proposed model and method are also applied to real data from tagged rack lobsters to assess the possible seasonal effect on growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six species of line-caught coral reef fish (Plectropomus spp., Lethrinus miniatus, Lethrinus laticaudis, Lutjanus sebae, Lutjanus malabaricus and Lutjanus erythropterus) were tagged by members of the Australian National Sportsfishing Association (ANSA) in Queensland between 1986 and 2003. Of the 14,757 fish tagged, 1607 were recaptured and we analysed these data to describe movement and determine factors likely to impact release survival. All species were classified as residents since over 80% of recaptures for each species occurred within 1 km of the release site. Few individuals (range 0.8-5%) were recaptured more than 20 km from their release point. L. sebae had a higher recapture rate (19.9%) than the other species studied (range 2.1-11.7%). Venting swimbladder gases, regardless of whether or not fish appeared to be suffering from barotrauma, significantly enhanced (P < 0.05) the survival of L. sebae and L. malabaricus but had no significant effect (P > 0.05) on L. erythropterus. The condition of fish on release, subjectively assessed by anglers, was only a significant effect on recapture rate for L. sebae where fish in "fair" condition had less than half the recapture rate of those assessed as in "excellent" or "good" condition. The recapture rate of L. sebae and L. laticaudis was significantly (P < 0.05) affected by depth with recapture rate declining in depths exceeding 30 m. Overall, the results showed that depth of capture, release condition and treatment for barotrauma influenced recapture rate for some species but these effects were not consistent across all species studied. Recommendations were made to the ANSA tagging clubs to record additional information such as injury, hooking location and hook type to enable a more comprehensive future assessment of the factors influencing release survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual’s previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag–recapture data and tag–recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss a dynamic pricing model which will aid automobile manufacturer in choosing the right price for customer segment. Though there is oligopoly market structure, the customers get "locked" into a particular technology/company which virtually makes the situation akin to a monopoly. There are associated network externalities and positive feedback. The key idea in monopoly pricing lies in extracting the customer surplus by exploiting the respective elasticities of demand. We present a Walrasian general equilibrium approach to determine the segment price. We compare the prices obtained from optimization model with that from Walrasian dynamics. The results are encouraging and can serve as a critical factor in Customer Relationship Management (CRM) and thereby effectively manage the lock-in.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of trace amounts of explosive materials is significantly important for security concerns and pollution control. Four multicomponent metal organic frameworks (MOFs-12, 13, 23, and 123) have been synthesized by employing ligands embedded with fluorescent tags. The multicomponent assembly of the ligands was utilized to acquire a diverse electronic behavior of the MOFs and the fluorescent tags were strategically chosen to enhance the electron density in the MOFs. The phase purity of the MOFs was established by PXRD, NMR spectroscopy, and finally by singlecrystal XRD. Single-crystal structures of the MOFs-12 and 13 showed the formation of three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These electron-rich MOFs were utilized for detection of ex- plosive nitroaromatic compounds (NACs) through fluorescence quenching with high selectivity and sensitivity. The rate of fluorescence quenching for all the MOFs follows the order of electron deficiency of the NACs. We also showed the detection of picric acid (PA) by luminescent MOFs is not always reliable and can be misleading. This attracts our attention to explore these MOFs for sensing picryl chloride (PC), which is as explosive as picric acid and used widely to prepare more stable explosives like 2,4,6-trinitroaniline from PA. Moreover, the recyclability and sensitivity studies indicated that these MOFs can be reused several times with parts per billion (ppb) levels of sensitivity towards PC and 2,4,6-trinitrotoluene (TNT).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Echo integration is an established method for stock estimation. However, this method is not free of errors like every other measuring method. Especially the variation between day and night behaviour of fish may lead to large measuring errors. A new method is represented detecting such systematic errors, exemplified by investigations during the international hydroacoustic survey on the spring spawning herring in the Norwegian Sea. For this method all measured sA-values are sorted by starting time of the measuring unit distance. In order to reduce random influences a moving average over five time intervals is computed. When displaying these values in a diagram makes it is very easy to detect systematic errors based on the differences in day-night behaviour. For both species, herring and blue whiting, stock estimations are calculated based on the measured sA-values and the results of the analysed trawl catches. The influence of the differnt day and night behaviour of herring on the results of its biomass estimation is rather low. For blue whiting the measured values were about three time higher during day time than during night time. The result of this investigation should initiate a change of the evaluation procedure for stock estimation based on hydroacoustic measurements.