894 resultados para supraglottic airway devices
Resumo:
The Laryngeal Mask Airway is a reusable device for maintaining the patency of a patient's airway during general anaesthesia. The device can be reused after it has been cleaned and sterilized. Protein contamination of medical instruments is a concern and has been found to occur despite standard sterilization techniques. The reason for the concern relates to the possibility of the transmission of prions and the risk of developing a neurodegenerative disorder such as Creutzveldt-Jacob disease. The purpose of this study was to quantify the amount of protein contamination that occurs, and to relate this to the number of times the Laryngeal Mask Airway has been used. Fifty previously used Classic Laryngeal Masks were collected after routine sterilization and packaging. The devices were immersed in protein detecting stain and then visual inspection performed to assess the degree and distribution of the staining. The researcher was blinded to the number of times the Laryngeal Mask Airway had been used. Linear regression analysis of the degrees of staining of the airway revealed that protein contamination occurs after the first use of the device and this increases with each subsequent use. This finding highlights the concern that the currently used cleaning and sterilization methods do not prevent the accumulation of proteinaceous material on Laryngeal Mask Airways. Consideration should be given to the search for more efficient cleaning and sterilization techniques or the use of disposable devices.
Resumo:
Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed.
Resumo:
We reported here for the first time that triboelectric charges on PET sheets can be used to seal and control the flow rate in paper-based devices. The proposed method exhibits simplicity and low cost, provides reversible sealing and minimizes the effect of sample evaporation.
Resumo:
This study was designed to evaluate the correlation between computed tomography findings and data from the physical examination and the Friedman Staging System (FSS) in patients with obstructive sleep apnea (OSA). We performed a retrospective evaluation by reviewing the medical records of 33 patients (19 male and 14 female patients) with a mean body mass index of 30.38 kg/m(2) and mean age of 49.35 years. Among these patients, 14 presented with severe OSA, 7 had moderate OSA, 7 had mild OSA, and 5 were healthy. The patients were divided into 2 groups according to the FSS: Group A comprised patients with FSS stage I or II, and group B comprised patients with FSS stage III. By use of the Fisher exact test, a positive relationship between the FSS stage and apnea-hypopnea index (P = .011) and between the FSS stage and body mass index (P = .012) was found. There was no correlation between age (P = .55) and gender (P = .53) with the FSS stage. The analysis of variance test comparing the upper airway volume between the 2 groups showed P = .018. In this sample the FSS and upper airway volume showed an inverse correlation and were useful in analyzing the mechanisms of airway collapse in patients with OSA.
Resumo:
Colloidal particles have been used to template the electrosynthesis of several materials, such as semiconductors, metals and alloys. The method allows good control over the thickness of the resulting material by choosing the appropriate charge applied to the system, and it is able to produce high density deposited materials without shrinkage. These materials are a true model of the template structure and, due to the high surface areas obtained, are very promising for use in electrochemical applications. In the present work, the assembly of monodisperse polystyrene templates was conduced over gold, platinum and glassy carbon substrates in order to show the electrodeposition of an oxide, a conducting polymer and a hybrid inorganic-organic material with applications in the supercapacitor and sensor fields. The performances of the resulting nanostructured films have been compared with the analogue bulk material and the results achieved are depicted in this paper.
Resumo:
Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science.
Resumo:
Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.
Resumo:
This paper describes three-dimensional microfluidic paper-based analytical devices (3-D mu PADs) that can be programmed (postfabrication) by the user to generate multiple patterns of flow through them. These devices are programmed by pressing single-use 'on' buttons, using a stylus or a ballpoint pen. Pressing a button closes a small space (gap) between two vertically aligned microfluidic channels, and allows fluids to wick from one channel to the other. These devices are simple to fabricate, and are made entirely out of paper and double-sided adhesive tape. Programmable devices expand the capabilities of mu PADs and provide a simple method for controlling the movement of fluids in paper-based channels. They are the conceptual equivalent of field-programmable gate arrays (FPGAs) widely used in electronics.
Resumo:
To analyse the sensitivity and specificity of clinical indicators of ineffective airway clearance in children with congenital heart disease and to identify the indicators that have high predictive power. The precise establishment of nursing diagnoses has been found to be one of the factors contributing to higher quality of care and cost reduction in healthcare institutions. The use of indicators to diagnose ineffective airway clearance could improve care of children with congenital heart disease. Longitudinal study. Participants consisted of 45 children, <= 1 year of age, with congenital heart disease, who had not had definitive or palliative surgical correction. Six assessments were made at 2-day intervals. Each clinical indicator was defined based on previously established operational criteria. Sensitivity, specificity and positive and negative predictive values of each indicator were calculated based on a model for the longitudinal data. A nursing diagnosis of ineffective airway clearance was made in 31% of patients on the first assessment, rising to 71% on the last assessment, for a 40% increase. Sensitivity was highest for Changes in Respiratory Rates/Rhythms (0.99), followed by Adventitious Breath Sounds (0.97), Sputum Production (0.85) and Restlessness (0.53). Specificity was higher for Sputum Production (0.92), followed by Restlessness (0.73), Adventitious Breath Sounds (0.70) and Changes in Respiratory Rates/Rhythms (0.17). The best positive predictive values occurred for Sputum Production (0.93) and Adventitious Breath Sounds (0.80). Adventitious Breath Sounds followed by Sputum Production were the indicators that had the best overall sensitivity and specificity as well as the highest positive predictive values. The use of simple indicators in nursing diagnoses can improve identification of ineffective airway clearance in children with congenital heart disease, thus leading to early treatment of the problem and better care for these children.
Resumo:
The design of supplementary damping controllers to mitigate the effects of electromechanical oscillations in power systems is a highly complex and time-consuming process, which requires a significant amount of knowledge from the part of the designer. In this study, the authors propose an automatic technique that takes the burden of tuning the controller parameters away from the power engineer and places it on the computer. Unlike other approaches that do the same based on robust control theories or evolutionary computing techniques, our proposed procedure uses an optimisation algorithm that works over a formulation of the classical tuning problem in terms of bilinear matrix inequalities. Using this formulation, it is possible to apply linear matrix inequality solvers to find a solution to the tuning problem via an iterative process, with the advantage that these solvers are widely available and have well-known convergence properties. The proposed algorithm is applied to tune the parameters of supplementary controllers for thyristor controlled series capacitors placed in the New England/New York benchmark test system, aiming at the improvement of the damping factor of inter-area modes, under several different operating conditions. The results of the linear analysis are validated by non-linear simulation and demonstrate the effectiveness of the proposed procedure.
Resumo:
The advantages offered by the electronic component LED (Light Emitting Diode) have resulted in a quick and extensive application of this device in the replacement of incandescent lights. In this combined application, however, the relationship between the design variables and the desired effect or result is very complex and renders it difficult to model using conventional techniques. This paper consists of the development of a technique using artificial neural networks that makes it possible to obtain the luminous intensity values of brake lights using SMD (Surface Mounted Device) LEDs from design data. This technique can be utilized to design any automotive device that uses groups of SMD LEDs. The results of industrial applications using SMD LED are presented to validate the proposed technique.
Resumo:
This work presents a case study on technology assessment for power quality improvement devices. A system compatibility test protocol for power quality mitigation devices was developed in order to evaluate the functionality of three-phase voltage restoration devices. In order to validate this test protocol, the micro-DVR, a reduced power development platform for DVR (dynamic voltage restorer) devices, was tested and the results are discussed based on voltage disturbances standards. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
One of the most important recent improvements in cardiology is the use of ventricular assist devices (VADs) to help patients with severe heart diseases, especially when they are indicated to heart transplantation. The Institute Dante Pazzanese of Cardiology has been developing an implantable centrifugal blood pump that will be able to help a sick human heart to keep blood flow and pressure at physiological levels. This device will be used as a totally or partially implantable VAD. Therefore, an improvement on device performance is important for the betterment of the level of interaction with patient`s behavior or conditions. But some failures may occur if the device`s pumping control does not follow the changes in patient`s behavior or conditions. The VAD control system must consider tolerance to faults and have a dynamic adaptation according to patient`s cardiovascular system changes, and also must attend to changes in patient conditions, behavior, or comportments. This work proposes an application of the mechatronic approach to this class of devices based on advanced techniques for control, instrumentation, and automation to define a method for developing a hierarchical supervisory control system that is able to perform VAD control dynamically, automatically, and securely. For this methodology, we used concepts based on Bayesian network for patients` diagnoses, Petri nets to generate a VAD control algorithm, and Safety Instrumented Systems to ensure VAD system security. Applying these concepts, a VAD control system is being built for method effectiveness confirmation.
Resumo:
This paper presents a relatively simple method to fabricate field-emitter arrays from silicon substrates. These devices are obtained from silicon micromachining by means of the HI-PS technique-a combination of hydrogen ion implantation and porous silicon used as sacrificial layer. Also, a new process sequence is proposed and implemented to fabricate self-aligned integrated field-emission devices based on this technique. Electrical characteristics of the microtips obtained show good agreement with the Fowler-Nordheim theory, which are suitable for the proposed application.
Resumo:
A new digital computer mock circulatory system has been developed in order to replicate the physiologic and pathophysiologic characteristics of the human cardiovascular system. The computer performs the acquisition of pressure, flow, and temperature in an open loop system. A computer program has been developed in Labview programing environment to evaluate all these physical parameters. The acquisition system was composed of pressure, flow, and temperature sensors and also signal conditioning modules. In this study, some results of flow, cardiac frequencies, pressures, and temperature were evaluated according to physiologic ventricular states. The results were compared with literature data. In further works, performance investigations will be conducted on a ventricular assist device and endoprosthesis. Also, this device should allow for evaluation of several kinds of vascular diseases.