878 resultados para stereo 3D


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel technique to align partial 3D reconstructions of the seabed acquired by a stereo camera mounted on an autonomous underwater vehicle. Vehicle localization and seabed mapping is performed simultaneously by means of an Extended Kalman Filter. Passive landmarks are detected on the images and characterized considering 2D and 3D features. Landmarks are re-observed while the robot is navigating and data association becomes easier but robust. Once the survey is completed, vehicle trajectory is smoothed by a Rauch-Tung-Striebel filter obtaining an even better alignment of the 3D views and yet a large-scale acquisition of the seabed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La percepció per visió es millorada quan es pot gaudir d'un camp de visió ampli. Aquesta tesi es concentra en la percepció visual de la profunditat amb l'ajuda de càmeres omnidireccionals. La percepció 3D s'obté generalment en la visió per computadora utilitzant configuracions estèreo amb el desavantatge del cost computacional elevat a l'hora de buscar els elements visuals comuns entre les imatges. La solució que ofereix aquesta tesi és l'ús de la llum estructurada per resoldre el problema de relacionar les correspondències. S'ha realitzat un estudi sobre els sistemes de visió omnidireccional. S'han avaluat vàries configuracions estèreo i s'ha escollit la millor. Els paràmetres del model són difícils de mesurar directament i, en conseqüència, s'ha desenvolupat una sèrie de mètodes de calibració. Els resultats obtinguts són prometedors i demostren que el sensor pot ésser utilitzat en aplicacions per a la percepció de la profunditat com serien el modelatge de l'escena, la inspecció de canonades, navegació de robots, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cue combination rules have often been applied to the perception of surface shape but not to judgements of object location. Here, we used immersive virtual reality to explore the relationship between different cues to distance. Participants viewed a virtual scene and judged the change in distance of an object presented in two intervals, where the scene changed in size between intervals (by a factor of between 0.25 and 4). We measured thresholds for detecting a change in object distance when there were only 'physical' (stereo and motion parallax) or 'texture-based' cues (independent of the scale of the scene) and used these to predict biases in a distance matching task. Under a range of conditions, in which the viewing distance and position of the tarte relative to other objects was varied, the ration of 'physical' to 'texture-based' thresholds was a good predictor of biases in the distance matching task. The cue combination approach, which successfully accounts for our data, relies on quite different principles from those underlying geometric reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans can perceive three dimension, our world is three dimensional and it is becoming increasingly digital too. We have the need to capture and preserve our existence in digital means perhaps due to our own mortality. We have also the need to reproduce objects or create small identical objects to prototype, test or study them. Some objects have been lost through time and are only accessible through old photographs. With robust model generation from photographs we can use one of the biggest human data sets and reproduce real world objects digitally and physically with printers. What is the current state of development in three dimensional reconstruction through photographs both in the commercial world and in the open source world? And what tools are available for a developer to build his own reconstruction software? To answer these questions several pieces of software were tested, from full commercial software packages to open source small projects, including libraries aimed at computer vision. To bring to the real world the 3D models a 3D printer was built, tested and analyzed, its problems and weaknesses evaluated. Lastly using a computer vision library a small software with limited capabilities was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In this paper we present a variational technique for the reconstruction of 3D cylindrical surfaces. Roughly speaking by a cylindrical surface we mean a surface that can be parameterized using the projection on a cylinder in terms of two coordinates, representing the displacement and angle in a cylindrical coordinate system respectively. The starting point for our method is a set of different views of a cylindrical surface, as well as a precomputed disparity map estimation between pair of images. The proposed variational technique is based on an energy minimization where we balance on the one hand the regularity of the cylindrical function given by the distance of the surface points to cylinder axis, and on the other hand, the distance between the projection of the surface points on the images and the expected location following the precomputed disparity map estimation between pair of images. One interesting advantage of this approach is that we regularize the 3D surface by means of a bi-dimensio al minimization problem. We show some experimental results for large stereo sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il framework in oggetto, è un ambiente ideato con lo scopo di applicare tecniche di Machine Learning (in particolare le Random Forest) alle funzionalità dell'algoritmo di stereo matching SGM (Semi Global Matching), al fine di incrementarne l'accuratezza in versione standard. Scopo della presente tesi è quello di modificare alcune impostazioni di tale framework rendendolo un ambiente che meglio si adatti alla direzionalità delle scanline (introducendo finestre di supporto rettangolari e ortogonali e il training di foreste separate in base alla singola scanline) e ampliarne le funzionalità tramite l'aggiunta di alcune nuove feature, quali la distanza dal più vicino edge direzionale e la distintività calcolate sulle immagini Left della stereo pair e gli edge direzionali sulle mappe di disparità. Il fine ultimo sarà quello di eseguire svariati test sui dataset Middlebury 2014 e KITTI e raccogliere dati che descrivano l'andamento in positivo o negativo delle modifiche effettuate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adding virtual objects to real environments plays an important role in todays computer graphics: Typical examples are virtual furniture in a real room and virtual characters in real movies. For a believable appearance, consistent lighting of the virtual objects is required. We present an augmented reality system that displays virtual objects with consistent illumination and shadows in the image of a simple webcam. We use two high dynamic range video cameras with fisheye lenses permanently recording the environment illumination. A sampling algorithm selects a few bright parts in one of the wide angle images and the corresponding points in the second camera image. The 3D position can then be calculated using epipolar geometry. Finally, the selected point lights are used in a multi pass algorithm to draw the virtual object with shadows. To validate our approach, we compare the appearance and shadows of the synthetic objects with real objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a user assisted technique for 3D stereo conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as constraints in an image warping framework to produce a stereo pair. By sidestepping explicit construction of a depth map, our approach is applicable to more general scenes and avoids potential artifacts of depth-image-based rendering. Our method is most suitable for scenes with large scale structures such as buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although 3DTV has led the evolution of television market, its delivery by broadcast networks is still small. Now, 3DTV transmis-sions are usually done by combining both views into one common frame (side by side) to be able to use standard HDTV transmission equipment. Today, orthogonal subsampling is mostly used, but other alternatives will appear soon. Here, different subsampling schemes for both progressive and interlaced 3DTV are considered. For each possible scheme, its pre-served frequency content is analyzed and a simple interpolation filter is designed. The analysis is carried out for progressive and interlaced video and the designed filters are applied on different sequences, showing the advantages and disadvantages of the different options