49 resultados para spinors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been noted that at high energy the Ricci scalar is manifested in two different ways, as a matter field as well as a geometrical field (which is its usual nature even at low energy). Here, using the material aspect of the Ricci scalar, its interaction with Dirac spinors is considered in four-dimensional curved spacetime. We find that a large number of fermion-antifermion pairs can be produced by the exponential expansion of the early universe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho foi feito um estudo do limite de Karlhede para ondas pp. Para este fim, uma revisão rigorosa de Geometria Diferencial foi apresentada numa abordagem independente de sistemas de coordenadas. Além da abordagem usual, a curvatura de uma variedade riemanniana foi reescrita usando os formalismos de referenciais, formas diferenciais e espinores do grupo de Lorentz. O problema de equivalência para geometrias riemannianas foi formulado e as peculiaridades de sua aplicação é a Relatividade Geral são delineadas. O limite teórico de Karlhede para espaços-tempo de vácuo de tipo Petrov N foi apresentado. Esse limite é estudado na prática usando técnicas espinores e as condições para sua existência são resolvidas sem a introdução de sistemas de coordenadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a suitable sixth-order potential and turning off the Maxwell term provides us with pure Chern-Simons theory, with both topological and non-topological self-dual vortices, as found by Hong-Kim-Pac, and by Jackiw-Lee-Weinberg. The non-relativistic limit of the latter leads to non-topological Jackiw-Pi vortices with a pure fourth-order potential. Explicit solutions are found by solving the Liouville equation. The scalar matter field can be replaced by spinors, leading to fermionic vortices. Alternatively, topological vortices in external field are constructed in the phenomenological model proposed by Zhang-Hansson-Kivelson. Non-relativistic Maxwell-Chern-Simons vortices are also studied. The Schrodinger symmetry of Jackiw-Pi vortices, as well as the construction of some time-dependent vortices, can be explained by the conformal properties of non-relativistic space-time, derived in a Kaluza-Klein-type framework. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an approach to the quantum-mechanical description of relativistic orientable objects. It generalizes Wigner`s ideas concerning the treatment of nonrelativistic orientable objects (in particular, a nonrelativistic rotator) with the help of two reference frames (space-fixed and body-fixed). A technical realization of this generalization (for instance, in 3+1 dimensions) amounts to introducing wave functions that depend on elements of the Poincar, group G. A complete set of transformations that test the symmetries of an orientable object and of the embedding space belongs to the group I =GxG. All such transformations can be studied by considering a generalized regular representation of G in the space of scalar functions on the group, f(x,z), that depend on the Minkowski space points xaG/Spin(3,1) as well as on the orientation variables given by the elements z of a matrix ZaSpin(3,1). In particular, the field f(x,z) is a generating function of the usual spin-tensor multi-component fields. In the theory under consideration, there are four different types of spinors, and an orientable object is characterized by ten quantum numbers. We study the corresponding relativistic wave equations and their symmetry properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a new proposal for the ""picture lowering"" operators, we compute the tree level scattering amplitude in the minimal pure spinor formalism by performing the integration over the pure spinor space as a multidimensional Cauchy-type integral. The amplitude will be written in terms of the projective pure spinor variables, which turns out to be useful to relate rigorously the minimal and non-minimal versions of the pure spinor formalism. The natural language for relating these formalisms is the. Cech-Dolbeault isomorphism. Moreover, the Dolbeault cocycle corresponding to the tree-level scattering amplitude must be evaluated in SO(10)/SU(5) instead of the whole pure spinor space, which means that the origin is removed from this space. Also, the. Cech-Dolbeault language plays a key role for proving the invariance of the scattering amplitude under BRST, Lorentz and supersymmetry transformations, as well as the decoupling of unphysical states. We also relate the Green`s function for the massless scalar field in ten dimensions to the tree-level scattering amplitude and comment about the scattering amplitude at higher orders. In contrast with the traditional picture lowering operators, with our new proposal the tree level scattering amplitude is independent of the constant spinors introduced to define them and the BRST exact terms decouple without integrating over these constant spinors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some properties of the Clifford algebras Cl-3,Cl-0, Cl-1,Cl-3, Cl-4,Cl-1 similar or equal to C circle times Cl-1,Cl-3 and Cl-2,Cl-4 are presented, and three isomorphisms between the Dirac-Clifford algebra C circle times Cl-1,Cl-3 and Cl-4,Cl-1 are exhibited, in order to construct conformal maps and twistors, using the paravector model of spacetime. The isomorphism between the twistor space inner product isometry group SU( 2,2) and the group $pin(+)(2,4) is also investigated, in the light of a suitable isomorphism between C circle times Cl-1,Cl-3 and Cl-4,Cl-1. After reviewing the conformal spacetime structure, conformal maps are described in Minkowski spacetime as the twisted adjoint representation of $ pin(+)(2,4), acting on paravectors. Twistors are then presented via the paravector model of Clifford algebras and related to conformal maps in the Clifford algebra over the Lorentzian R-4,(1) spacetime.We construct twistors in Minkowski spacetime as algebraic spinors associated with the Dirac-Clifford algebra C circle times Cl-1,Cl-3 using one lower spacetime dimension than standard Clifford algebra formulations, since for this purpose, the Clifford algebra over R-4,R-1 is also used to describe conformal maps, instead of R-2,(4). Our formalism sheds some new light on the use of the paravector model and generalizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a real Lagrangian off-critical submodel describing the soliton sector of the so-called conformal affine sl(3)((1)) Toda model coupled to matter fields. The theory is treated as a constrained system in the context of Faddeev-Jackiw and the symplectic schemes. We exhibit the parent Lagrangian nature of the model from which generalizations of the sine-Gordon (GSG) or the massive Thirring (GMT) models are derivable. The dual description of the model is further emphasized by providing the relationships between bilinears of GMT spinors and relevant expressions of the GSG fields. In this way we exhibit the strong/weak coupling phases and the (generalized) soliton/particle correspondences of the model. The sl(n)((1)) case is also outlined. (C) 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the non-minimal pure spinor formalism to compute in a super-Poincare covariant manner the four-point massless one and two-loop open superstring amplitudes, and the gauge anomaly of the six-point one-loop amplitude. All of these amplitudes are expressed as integrals of ten-dimensional superfields in a pure spinor superspace which involves five theta coordinates covariantly contracted with three pure spinors. The bosonic contribution to these amplitudes agrees with the standard results, and we demonstrate identities which show how the t(8) and epsilon(10) tensors naturally emerge from integrals over pure spinor superspace.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2 + 1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was earlier shown that an SO(9,1) θα spinor variable can be constructed from RNS matter and ghost fields. θα has a bosonic world-sheet super-partner λα which plays the role of a twistor variable, satisfying λΓμ λ = ∂xμ + iθΓμ ∂θ. For Type IIA superstrings, the left-moving [θL α, λL α] and right-moving [θRα, λRα] can be combined into 32-component SO(10,1) spinors [θA, λA]. This suggests that λAΓAB 11 λB = 2λL αλRα can be interpreted as momentum in the eleventh direction. Evidence for this interpretation comes from the zero-momentum vertex operators of the Type IIA superstring and from consideration of DD-branes. As in the work of Bars, one finds an SO(10,2) structure for the Type IIA superstring and an SO(9, 1) × SO(2, 1) structure for the Type IIB superstring. © 1997 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.