984 resultados para soybean hull
Resumo:
This study examines the effects of partially or completely replacing pork backfat with soybean oil in mortadella production. Mortadella sausages of various formulations showed no differences (P > 0.05) in any of the technological and physico-chemical parameters evaluated (process yield, shear force, pH, water activity and proximate composition). When compared to products made with pork backfat, those made with vegetable oil had a higher unsaturated fatty acid content (P <= 0.05) and a similar cholesterol content (P > 0.05). Products made with vegetable oil scored lower (P <= 0.05) than those made with pork fat on all of the evaluated sensory attributes (colour, odour, flavour, texture and overall acceptability).
Resumo:
We have characterized potato (Solanum tuberosum L.) plants expressing a soybean leghemoglobin that is targeted to plastids. Transgenic plants displayed a dwarf phenotype caused by short internode length, and exhibited increased tuberization in vitro. Under in vivo conditions that do not promote tuberization, plants showed smaller parenchymal cells than control plants. Analysis of gibberellin (GA) concentrations indicated that the transgenic plants have a substantial reduction (approximately 10-fold) of bioactive GA(1) concentration in shoots. Application of GA(3) to the shoot apex of the transformed plants completely restored the wild type phenotype suggesting that GA-biosynthesis rather than signal transduction was limiting. Since the first stage of the GA-biosynthetic pathway is located in the plastid, these results suggest that an early step in the pathway may be affected by the presence of the leghemoglobin.
Resumo:
BACKGROUND: Defoliation by Anticarsia gemmatalis (Hubner), Pseudoplusia includens (Walker), Spodoptera eridania (Cramer), S. cosmioides (Walker) and S. frugiperda (JE Smith) (Lepidoptera: Noctuidae) was evaluated in four soybean genotypes. A multiple-species economic threshold (ET), based upon the species` feeding capacity, is proposed with the aim of improving growers` management decisions on when to initiate control measures for the species complex. RESULTS: Consumption by A. gemmatalis, S. cosmioides or S. eridania on different genotypes was similar. The highest consumption of P. includens was 92.7 cm(2) on Codetec 219RR; that of S. frugiperda was 118 cm(2) on Codetec 219RR and 115.1 cm(2) on MSoy 8787RR. The insect injury equivalent for S. cosmoides, calculated on the basis of insect consumption, was double the standard consumption by A. gemmatalis, and statistically different from the other species tested, which were similar to each other. CONCLUSIONS: As S. cosmioides always defoliated nearly twice the leaf area of the other species, the injury equivalent would be 2 for this lepidopteran species and 1 for the other species. The recommended multiple-species ET to trigger the beginning of insect control would then be 20 insect equivalents per linear metre. (C) 2010 Society of Chemical Industry
Resumo:
Proteinase inhibitors (PI) are present in plant tissues, especially in seeds, and act as a defense mechanism against herbivores and pathogens. Serine PI from soybean such as Bowman-Birk (BBPI) and Kunitz have been used to enhance resistance of sugarcane varieties to the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), the major pest of this crop. The use of these genetically-modified plants (GM) expressing PI requires knowledge of its sustainability and environmental safety, determining the stability of the introduced characteristic and its effects on non-target organisms. The objective of this study was to evaluate direct effects of ingestion of semi-purified and purified soybean PI and GM sugarcane plants on the soil-dwelling mite Scheloribates praeincisus (Berlese) (Acari: Oribatida). This mite is abundant in agricultural soils and participates in the process of organic matter decomposition; for this reason it will be exposed to PI by feeding on GM plant debris. Eggs of S. praeincisus were isolated and after larvae emerged, immatures were fed milled sugarcane leaves added to semi-purified or purified PI (Kunitz and BBPI) or immatures were fed GM sugarcane varieties expressing Kunitz and BBPI type PI or the untransformed near isogenic parental line variety as a control. Developmental time (larva-adult) and survival of S. praeincisus was evaluated. Neither Kunitz nor BBPI affected S. praeincisus survival. On the other hand, ingestion of semi-purified and purified Kunitz inhibitor diminished duration of S. praeincisus immature stages. Ingestion of GM senescent leaves did not have an effect on S. praeincisus immature developmental time and survival, compared to ingestion of leaves from the isogenic parental plants. These results indicate that cultivation of these transgenic sugarcane plants is safe for the non-target species S. praeincisus.
Resumo:
The ability of Phakopsora pachyrhizi to cause infection under conditions of discontinuous wetness was investigated. In in vitro experiments, droplets of a uredospore suspension were deposited onto the surface of polystyrene. After an initial wetting period of either 1, 2 or 4 h, the drops were dried for different time intervals and then the wetness was restored for 11, 10 or 8 h. Germination and appressorium formation were evaluated. In in vivo experiments, soybean plants were inoculated with a uredospore suspension. Leaf wetness was interrupted for 1, 3 or 6 h after initial wetting periods of 1, 2 or 4 h. Then, the wetting was re-established for 11, 10 or 8 h, respectively. Rust severity was evaluated 14 days after inoculation. The germination of the spores and the formation of the appressoria on the soybean leaves after different periods of wetness were also quantified in vivo by scanning electron microscopy. P. pachyrhizi showed a high infective capacity during short periods of time. An interruption of wetness after 1 h caused average reductions in germination from 56 to 75% and in appressorium formation from 84 to 96%. Rust severity was lower in all of the in vivo treatments with discontinuous wetness when compared to the control plants. Rust severity was zero when the interruption of wetness occurred 4 h after the initial wetting. Wetting interruptions after 1 and 2 h reduced the average rust severity by 83 and 77%, respectively. The germination of the uredospores on the soybean leaves occurred after 2 h of wetness, with a maximum germination appearing after 4 h of wetness. Wetness interruption affected mainly the spores that had initiated the germination.
Resumo:
Core collections are of strategic importance as they allow the use of a small part of a germplasm collection that is representative of the total collection. The objective of this study was to develop a soybean core collection of the USDA Soybean Germplasm Collection by comparing the results of random, proportional, logarithmic, multivariate proportional and multivariate logarithmic sampling strategies. All but the random sampling strategy used stratification of the entire collection based on passport data and maturity group classification. The multivariate proportional and multivariate logarithmic strategies made further use of qualitative and quantitative trait data to select diverse accessions within each stratum. The 18 quantitative trait data distribution parameters were calculated for each core and for the entire collection for pairwise comparison to validate the sampling strategies. All strategies were adequate for assembling a core collection. The random core collection best represented the entire collection in statistical terms. Proportional and logarithmic strategies did not maximize statistical representation but were better in selecting maximum variability. Multivariate proportional and multivariate logarithmic strategies produced the best core collections as measured by maximum variability conservation. The soybean core collection was established using the multivariate proportional selection strategy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
This study aimed to evaluate the average behavior, the genotype x environment (GxE), adaptability and stability of seven soybean cultivars at three sowing dates in Uberlandia-MG. The tests were conducted at Capim Branco Farm, belonging to the Federal University of Uberlandia. Sowing was held on october 29 (1st season), november 24 (2nd season) and december 17 (3rd season) 2007. The experimental design was a randomized, seven genotypes (UFUS Xavante, UFUS Riqueza, UFUS Guarani, UFUS Milionaria, Msoy 8001, Msoy 8411 and Msoy 8914) with three replications in each of three sowing dates. Means were compared by Tukey test at 5% probability. Analysis of adaptability and phenotypic stability of genotypes was performed using the Eberhart and Russell (1966), Lin and Binns (1988) modified by Carneiro (1998) and centroid (NASCIMENTO et al., 2009). For grain yield, the cultivar UFUS Xavante was classified as specific adaptability to environment and high stability. The other cultivars were classified as being of general adaptability. For oil content, the cultivars Msoy 8914 and UFUS Xavante behaved as high stability and was classified as having high adaptability. For the character content of protein, all cultivars behaved as wide adaptability and low stability.
Resumo:
Yield is closely linked to the plant yield components and depend directly of the genotype interaction with the environment. Essays were installed in the experimental field of the Bahia Foundation in the Maria Gabriela farm in the county of Sao Desiderio - BA in the year 2006-2007. The aim of this work was to evaluate yield components of five soybean cultivars with different maturation cycles indicated for the Western Region of Bahia in different sowing periods. The experimental design was in random blocks in 4 x 5 factorial scheme (four sowing periods: Ep1 first - 11/29/2006, Ep2 second - 12/14/2006, Ep3 third - 12/28/2007, Ep4 fourth - 01/12/2007 and five cultivars: M-SOY 8411, BRS Corisco, BRS 263 [Diferente], BRS Barreiras e M-SOY 9350) with four repetitions. The following characteristics were evaluated: total number of pods per plant, total number of beans per plant, mass of 1000 beans and yield. Plant yield components, total number of pods per plant, total number of beans per plant, mass of 1000 beans, reduced with sowing delay and showed compensation effect between cultivars and sowing periods. Late sowing Ep3 (28/12/2006) and Ep4 (12/01/2007) were not favourable to raise yield of soybean in the Western Region of Bahia.
Resumo:
Influence of light and leaf epicuticular wax layer on Phakopsora pachyrhizi infection in soybean Asian rust, caused by the fungus Phakopsora pachyrhizi, is one of the most serious phytosanitary problems of soybean in Brazil, especially because no cultivars with satisfactory resistance levels as yet exist. The objective of this study was to evaluate the influence of luminosity and of leaf epicuticular wax on the infection of soybean by P. pachyrhizi. The adaxial and abaxial leaflet surfaces of the first trifoliate leaf from cultivar BRS 154, phenological stage V2, were inoculated with a suspension of 105 uredospores/mL. The plants were kept for 24 hours in a humid chamber at temperature of 23 degrees C, in light or dark conditions, using a factorial design. Subsequently, the plants were maintained for 14 days under a 12-hour photoperiod. The disease severity and density were evaluated. For in vitro experiments, in light or dark conditions, the evaluation was done in terms of uredospore germination and appressorium formation. The wax content of adaxial and abaxial leaflets was analyzed quantitatively using chloroform extraction and ultrastructurally using scanning electron microscope. Higher density and severity were observed when the adaxial surface was inoculated, with later incubation of the plants in the dark, with no significant interaction between these factors. Spore germination in the dark (40.7%) was statistically different from spore germination in the light (28.5%). The same effect was observed with appressorium formation, in the dark (24.7%) and in the light (12.8%). The quantity and the ultrastructural aspects of epicuticular wax content did not show differences between the adaxial and abaxial surfaces; nor did they show any effect on infection by Phakopsora pachyrhizi in the soybean cultivar studied.
Resumo:
Influence of soybean phenological stage and leaflets age on infection by Phakopsora pachyrhizi This work was conducted to study the influence of soybean growth stage and leaf age on the infection of Phakopsora pachyrhizi, the soybean rust pathogen. Soybean plants (cv. BRS 154 and BRS 258) at the V(3), R(1) and R(5) growth stages were inoculated with a 1 x 10(5) urediniospores per mL suspension. After a period of 24 hours in dew chambers, all plants were removed from the chambers and placed under greenhouse conditions for 20 days. Mean latent period (PLM) and disease severity were estimated. The susceptibility of trifoliate leaves to soybean rust was estimated on cv. BRS 154 at the growth stage R5. Pathogen inoculation was done at the first four trifoliate leaves. Fifteen days after inoculation, leaflets of each trefoil were evaluated for disease severity, lesion mean size and infection frequency. Plants` growth stage did not influence the PLM. Cultivars BRS 154 and BRS 258 presented PLM of 8 and 9 days, respectively. There was no difference in disease severity at the growth stages V(3) and R(1), but those values were higher than at the R(5) growth stage, 8 days after inoculation. The oldest trefoil showed the highest disease values.
Resumo:
The storage of Carioca bean at 30 C and 75% relative humidity for eight months altered the solubilization pattern of hulls non-starch polysaccharides The polysaccharide physicochemical pattern changed resulting in a shift in the composition of water-soluble and water-insoluble polysaccharides caused by the insolubilization of galacturonans and xyloglucan Hulls make up 10% of whole beans which showed an increase of about 5% in water-insoluble polysaccharides and a decrease of about 1% in water-soluble polysaccharides with aging These values suggest that cotyledons and hulls together account for an increase of about 2 g of water-insoluble polysaccharides and a decrease of 1 5 g of water-soluble polysaccharides per 100 g of beans This change in the polysaccharide composition may produce a considerable difference in the dietary fiber profile The alterations observed in bean hull non-starch polysaccharide composition were similar to those previously observed in the cotyledon (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The natural chlorophyll degradation results in noncolored chlorophyll catabolites (NCCs), but there are controversies if these are the final products. The formation and degradation of NCCs during soybean seed (Glycine max L. Merrill) maturation and two drying temperatures were investigated. Soybean was harvested at six maturation stages. The effect of postharvest drying at 40 and 60 degrees C on the NCC formation was analyzed by high-performance liquid chromatography (HPLC), and results were expressed as areas under the curve. All samples contained fractions with an absorption maximum at 320 nm, typical for NCC. The amounts of NCC increased until 114 days after planting and were significantly lower in advanced maturation stages. These results indicate that the NCC in soybeans might not be the final products of chlorophyll degradation. Their reduction in advanced maturation stages may be due to further metabolization. Heating soybeans at 40 and 60 degrees C promoted unnatural chlorophyll degradation and impaired the formation of NCC.
Resumo:
BACKGROUND: The interaction between lipoxygenase-active soybean flour (LOX) and ascorbic acid (AA), on colour, rheological and sensory properties of wheat bread was studied with the aim of reducing the applied quantity of additives in bread formulations. RESULTS: The ascorbic acid (0-500 ppm) and active soybean flour (0-1%) mixture improved bread-crumb colour by lowering the yellow hue in a higher proportion than those expressed by the components alone, characterising a synergistic mechanism ((y) over cap (b) = 15.1- (1.7 x LOX) - (0.5 x AA) - (5.8 x LOX x AA), where : (y) over cap (b) represent the estimated value for the yellow hue parameter). No differences in flavour and porosity were seen between the samples. As supported by the instrumental methods, breads made with active soybean flour and ascorbic acid (LOX + AA) had whiter crumbs and were softer and springier than controls as assessed by a trained sensory panel. In summary, the combination of both active soybean flour and ascorbic acid showed synergism, promoting a greater bleaching effect than when used alone. CONCLUSION: These results suggest the potential use of active soybean flour as a synergistic ingredient in the substitution of artificial additives in bread making. Since the interaction on the bleaching response was not linear and active soybean flour showed a higher iron concentration (66.40 +/- 4.23 mu g g(-1)) than non-active soybean flour (52.30 +/- 0.40 mu g g(-1)), more studies are warranted to establish the biochemical mechanisms involved in this interaction. (c) 2007 Society of Chemical Industry.