999 resultados para sonic processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian is an 10’00’’ musical work which explores new musical interfaces and approaches to hybridising performance practices from the popular music, electronic dance music and computer music traditions. The work is designed to be presented in a range of contexts associated with the electro-acoustic, popular and classical music traditions. The work is for two performers using two synchronised laptops, an electric guitar and a custom designed gestural interface for vocal performers - the e-Mic (Extended Mic-stand Interface Controller). This interface was developed by one of the co-authors, Donna Hewitt. The e-Mic allows a vocal performer to manipulate the voice in real time through the capture of physical gestures via an array of sensors - pressure, distance, tilt - along with ribbon controllers and an X-Y joystick microphone mount. Performance data are then sent to a computer, running audio-processing software, which is used to transform the audio signal from the microphone. In this work, data is also exchanged between performers via a local wireless network, allowing performers to work with shared data streams. The duo employs the gestural conventions of guitarist and singer (i.e. 'a band' in a popular music context), but transform these sounds and gestures into new digital music. The gestural language of popular music is deliberately subverted and taken into a new context. The piece thus explores the nexus between the sonic and performative practices of electro acoustic music and intelligent electronic dance music (‘idm’). This work was situated in the research fields of new musical interfacing, interaction design, experimental music composition and performance. The contexts in which the research was conducted were live musical performance and studio music production. The work investigated new methods for musical interfacing, performance data mapping, hybrid performance and compositional practices in electronic music. The research methodology was practice-led. New insights were gained from the iterative experimental workshopping of gestural inputs, musical data mapping, inter-performer data exchange, software patch design, data and audio processing chains. In respect of interfacing, there were innovations in the design and implementation of a novel sensor-based gestural interface for singers, the e-Mic, one of the only existing gestural controllers for singers. This work explored the compositional potential of sharing real time performance data between performers and deployed novel methods for inter-performer data exchange and mapping. As regards stylistic and performance innovation, the work explored and demonstrated an approach to the hybridisation of the gestural and sonic language of popular music with recent ‘post-digital’ approaches to laptop based experimental music The development of the work was supported by an Australia Council Grant. Research findings have been disseminated via a range of international conference publications, recordings, radio interviews (ABC Classic FM), broadcasts, and performances at international events and festivals. The work was curated into the major Australian international festival, Liquid Architecture, and was selected by an international music jury (through blind peer review) for presentation at the International Computer Music Conference in Belfast, N. Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nodule is 19'54" musical work for two electronic music performers, two laptop computers and a custom built, sensor-based microphone controller - the e-Mic (Extended Mic-stand Interface Controller). This interface was developed by one of the co-authors, Donna Hewitt. The e-Mic allows a vocal performer to manipulate their voice in real time by capturing physical gestures via an array of sensors - pressure, distance, tilt – in addition to ribbon controllers and an X-Y joystick microphone mount. Performance data are then sent to a computer, running audio-processing software, which is used to transform the audio signal from the microphone in real time. The work seeks to explore the liminal space between the electro-acoustic music tradition and more recent developments in the electronic dance music tradition. It does so on both a performative (gestural) and compositional (sonic) level. Visually, the performance consists of a singer and a laptop performer, hybridising the gestural context of these traditions. On a sonic level, the work explores hybridity at deeper levels of the musical structure than simple bricolage or collage approaches. Hybridity is explored at the level of the sonic gesture (source material), in production (audio processing gestures), in performance gesture, and in approaches to the use of the frequency spectrum, pulse and meter. The work was designed to be performed in a range of contexts from concert halls, to clubs, to rock festivals, across a range of staging and production platforms. As a consequence, the work has been tested in a range of audience contexts, and has allowed the transportation of compositional and performance practices across traditional audience demographic boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a documented energy audit and long term study of energy and water reduction in a ghee factory. Global production of ghee exceeds 4 million tonnes annually. The factory in this study refines dairy products by non-traditional centrifugal separation and produces 99.9% pure, canned, crystallised Anhydrous Milk Fat (Ghee). Ghee is traditionally made by batch processing methods. The traditional method is less efficient, than centrifugal separation. An in depth systematic investigation was conducted of each item of major equipment including; ammonia refrigeration, a steam boiler, canning equipment, pumps, heat exchangers and compressed air were all fine-tuned. Continuous monitoring of electrical usage showed that not every initiative worked, others had pay back periods of less than a year. In 1994-95 energy consumption was 6,582GJ and in 2003-04 it was 5,552GJ down 16% for a similar output. A significant reduction in water usage was achieved by reducing the airflow in the refrigeration evaporative condensers to match the refrigeration load. Water usage has fallen 68% from18ML in 1994-95 to 5.78ML in 2003-04. The methods reported in this thesis could be applied to other industries, which have similar equipment, and other ghee manufacturers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-Time Kinematic (RTK) positioning is a technique used to provide precise positioning services at centimetre accuracy level in the context of Global Navigation Satellite Systems (GNSS). While a Network-based RTK (N-RTK) system involves multiple continuously operating reference stations (CORS), the simplest form of a NRTK system is a single-base RTK. In Australia there are several NRTK services operating in different states and over 1000 single-base RTK systems to support precise positioning applications for surveying, mining, agriculture, and civil construction in regional areas. Additionally, future generation GNSS constellations, including modernised GPS, Galileo, GLONASS, and Compass, with multiple frequencies have been either developed or will become fully operational in the next decade. A trend of future development of RTK systems is to make use of various isolated operating network and single-base RTK systems and multiple GNSS constellations for extended service coverage and improved performance. Several computational challenges have been identified for future NRTK services including: • Multiple GNSS constellations and multiple frequencies • Large scale, wide area NRTK services with a network of networks • Complex computation algorithms and processes • Greater part of positioning processes shifting from user end to network centre with the ability to cope with hundreds of simultaneous users’ requests (reverse RTK) There are two major requirements for NRTK data processing based on the four challenges faced by future NRTK systems, expandable computing power and scalable data sharing/transferring capability. This research explores new approaches to address these future NRTK challenges and requirements using the Grid Computing facility, in particular for large data processing burdens and complex computation algorithms. A Grid Computing based NRTK framework is proposed in this research, which is a layered framework consisting of: 1) Client layer with the form of Grid portal; 2) Service layer; 3) Execution layer. The user’s request is passed through these layers, and scheduled to different Grid nodes in the network infrastructure. A proof-of-concept demonstration for the proposed framework is performed in a five-node Grid environment at QUT and also Grid Australia. The Networked Transport of RTCM via Internet Protocol (Ntrip) open source software is adopted to download real-time RTCM data from multiple reference stations through the Internet, followed by job scheduling and simplified RTK computing. The system performance has been analysed and the results have preliminarily demonstrated the concepts and functionality of the new NRTK framework based on Grid Computing, whilst some aspects of the performance of the system are yet to be improved in future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigated human visual processing of simple two-colour patterns using a delayed match to sample paradigm with positron emission tomography (PET). This study is unique in that the authors specifically designed the visual stimuli to be the same for both pattern and colour recognition with all patterns being abstract shapes not easily verbally coded composed of two-colour combinations. The authors did this to explore those brain regions required for both colour and pattern processing and to separate those areas of activation required for one or the other. 10 right-handed male volunteers aged 18–35 yrs were recruited. The authors found that both tasks activated similar occipital regions, the major difference being more extensive activation in pattern recognition. A right-sided network that involved the inferior parietal lobule, the head of the caudate nucleus, and the pulvinar nucleus of the thalamus was common to both paradigms. Pattern recognition also activated the left temporal pole and right lateral orbital gyrus, whereas colour recognition activated the left fusiform gyrus and several right frontal regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several protocols for isolation of mycobacteria from water exist, but there is no established standard method. This study compared methods of processing potable water samples for the isolation of Mycobacterium avium and Mycobacterium intracellulare using spiked sterilized water and tap water decontaminated using 0.005% cetylpyridinium chloride (CPC). Samples were concentrated by centrifugation or filtration and inoculated onto Middlebrook 7H10 and 7H11 plates and Lowenstein-Jensen slants and into mycobacterial growth indicator tubes with or without polymyxin, azlocillin, nalidixic acid, trimethoprim, and amphotericin B. The solid media were incubated at 32°C, at 35°C, and at 35°C with CO2 and read weekly. The results suggest that filtration of water for the isolation of mycobacteria is a more sensitive method for concentration than centrifugation. The addition of sodium thiosulfate may not be necessary and may reduce the yield. Middlebrook M7H10 and 7H11 were equally sensitive culture media. CPC decontamination, while effective for reducing growth of contaminants, also significantly reduces mycobacterial numbers. There was no difference at 3 weeks between the different incubation temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory scale twin screw extruder has been interfaced with a near infrared (NIR) spectrometer via a fibre optic link so that NIR spectra can be collected continuously during the small scale experimental melt state processing of polymeric materials. This system can be used to investigate melt state processes such as reactive extrusion, in real time, in order to explore the kinetics and mechanism of the reaction. A further advantage of the system is that it has the capability to measure apparent viscosity simultaneously which gives important additional information about molecular weight changes and polymer degradation during processing. The system was used to study the melt processing of a nanocomposite consisting of a thermoplastic polyurethane and an organically modified layered silicate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SoundCipher is a software library written in the Java language that adds important music and sound features to the Processing environment that is widely used by media artists and otherwise has an orientation toward computational graphics. This article introduces the SoundCipher library and its features, describes its influences and design intentions, and positions it within the field of computer music programming tools. SoundCipher enables the rich history of algorithmic music techniques to be accessible within one of today’s most popular media art platforms. It also provides an accessible means for learning to create algorithmic music and sound programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While spatial determinants of emmetropization have been examined extensively in animal models and spatial processing of human myopes has also been studied, there have been few studies investigating temporal aspects of emmetropization and temporal processing in human myopia. The influence of temporal light modulation on eye growth and refractive compensation has been observed in animal models and there is evidence of temporal visual processing deficits in individuals with high myopia or other pathologies. Given this, the aims of this work were to examine the relationships between myopia (i.e. degree of myopia and progression status) and temporal visual performance and to consider any temporal processing deficits in terms of the parallel retinocortical pathways. Three psychophysical studies investigating temporal processing performance were conducted in young adult myopes and non-myopes: (1) backward visual masking, (2) dot motion perception and (3) phantom contour. For each experiment there were approximately 30 young emmetropes, 30 low myopes (myopia less than 5 D) and 30 high myopes (5 to 12 D). In the backward visual masking experiment, myopes were also classified according to their progression status (30 stable myopes and 30 progressing myopes). The first study was based on the observation that the visibility of a target is reduced by a second target, termed the mask, presented quickly after the first target. Myopes were more affected by the mask when the task was biased towards the magnocellular pathway; myopes had a 25% mean reduction in performance compared with emmetropes. However, there was no difference in the effect of the mask when the task was biased towards the parvocellular system. For all test conditions, there was no significant correlation between backward visual masking task performance and either the degree of myopia or myopia progression status. The dot motion perception study measured detection thresholds for the minimum displacement of moving dots, the maximum displacement of moving dots and degree of motion coherence required to correctly determine the direction of motion. The visual processing of these tasks is dominated by the magnocellular pathway. Compared with emmetropes, high myopes had reduced ability to detect the minimum displacement of moving dots for stimuli presented at the fovea (20% higher mean threshold) and possibly at the inferior nasal retina. The minimum displacement threshold was significantly and positively correlated to myopia magnitude and axial length, and significantly and negatively correlated with retinal thickness for the inferior nasal retina. The performance of emmetropes and myopes for all the other dot motion perception tasks were similar. In the phantom contour study, the highest temporal frequency of the flickering phantom pattern at which the contour was visible was determined. Myopes had significantly lower flicker detection limits (21.8 ± 7.1 Hz) than emmetropes (25.6 ± 8.8 Hz) for tasks biased towards the magnocellular pathway for both high (99%) and low (5%) contrast stimuli. There was no difference in flicker limits for a phantom contour task biased towards the parvocellular pathway. For all phantom contour tasks, there was no significant correlation between flicker detection thresholds and magnitude of myopia. Of the psychophysical temporal tasks studied here those primarily involving processing by the magnocellular pathway revealed differences in performance of the refractive error groups. While there are a number of interpretations for this data, this suggests that there may be a temporal processing deficit in some myopes that is selective for the magnocellular system. The minimum displacement dot motion perception task appears the most sensitive test, of those studied, for investigating changes in visual temporal processing in myopia. Data from the visual masking and phantom contour tasks suggest that the alterations to temporal processing occur at an early stage of myopia development. In addition, the link between increased minimum displacement threshold and decreasing retinal thickness suggests that there is a retinal component to the observed modifications in temporal processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defibrillator is a 16’41” musical work for solo performer, laptop computer and electric guitar. The electric guitar is processed in real-time by digital signal processing network in software, with gestural control provided by a foot-operated pedal board. --------- The work is informed by a range of ideas from the genres of electroacoustic music, western art music, popular music and cinematic sound. It seeks to fluidly cross and hybridise musical practices from these diverse sonic traditions and to develop a compositional language that draws upon multiple genres, but at the same time resists the ability to be located within a singular genre. Musical structures and sonic markers which form genre are ruptured at strategic levels of the musical structure in order to allow for a cross flow of concepts between genres. The process of rupture is facilitated by the practical implementation of music and sound reception theories into the compositional process. -------- The piece exhibits the by-products of a composer born into a media saturated environment, drawing on a range of musical and sonic traditions, actively seeking to explore the liminal space in between these traditions. The project stems from the author's research interests in locating points of connection between traditions of experimentation in diverse musical and sonic traditions arising from the broad uptake of media technologies in the early 20th century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the fouling characteristics of four tubular ceramic membranes with pore sizes 300 kDa, 0.1 μm and 0.45 μm installed in a pilot plant at a sugar factory for processing clarified cane sugar juices. All the membranes, except the one with a pore size of 0.45 μm, generally gave reproducible results through the trials, were easy to clean and could handle operation at high volumetric concentration factors. Analysis of fouled and cleaned ceramic membranes revealed that polysaccharides, lipids and to a lesser extent, polyphenols, as well as other colloidal particles cause fouling of the membranes. Electrostatic and hydrophobic forces cause strong aggregation of the polymeric components with one another and with colloidal particles. To combat irreversible fouling of the membranes, treatment options that result in the removal of particles having a size range of 0.2–0.5 μm and in addition remove polymeric impurities, need to be identified. Chemical and microscopic evaluations of the juices and the structural characterisation of individual particles and aggregates identified options to mitigate the fouling of membranes. These include conditioning the feed prior to membrane filtration to break up the network structure formed between the polymers and particles in the feed and the use of surfactants to prevent the aggregation of polymers and particles.