965 resultados para signalling mechanisms


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the resistance of bacteria to conventional antibiotics has become an increasing problem, new antimicrobial drugs are urgently needed. One possible source of new antibacterial agents is a group of cationic antimicrobial peptides (CAMPs) produced by practically all living organisms. These peptides are typically small, amphipathic and positively charged and contain well defined a-helical or b-sheet secondary structures. The main antibacterial action mechanism of CAMPs is considered to be disruption of the cell membrane, but other targets of CAMPs also exist. Some bacterial species have evolved defence mechanisms against the harmful effects of CAMPs. One of the most effective defence mechanisms is reduction of the net negative charge of bacterial cell surfaces. Global analysis of gene expression of two Gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, was used to further study the stress responses induced by different types of CAMPs. B. subtilis cells were treated with sublethal concentrations of a-helical peptide LL-37, b-sheet peptide protegrin 1 or synthetic analogue poly-L-lysine, and the changes in gene expression were studied using DNA macroarrays. In the case of S. aureus, three different a-helical peptides were selected for the transcriptome analyses: temporin L, ovispirin-1 and dermaseptin K4-S4(1-16). Transcriptional changes caused by peptide stress were examined using oligo DNA microarrays. The transcriptome analysis revealed two main cell signalling mechanisms mediating CAMP stress responses in Gram-positive bacteria: extracytoplasmic function (ECF)sigma factors and two-component systems (TCSs). In B. subtilis, ECF sigma factors sigW and sigM as well as TCS LiaRS responded to the cell membrane disruption caused by CAMPs. In S. aureus, CAMPs caused a similar stress response to antibiotics interfering in cell wall synthesis, and TCS VraSR was strongly activated. All of these transcriptional regulators are known to respond to several compounds other than CAMPs interfering with cell envelope integrity, suggesting that they sense cell envelope stress in general. Among the most strongly induced genes were yxdLM (in B. subtilis) and vraDE (in S. aureus) encoding homologous ABC transporters. Transcription of yxdLM and vraDE operons is controlled by TCSs YxdJK and ApsRS, respectively. These TCSs seemed to be responsible for the direct recognition of CAMPs. The yxdLM operon was specifically induced by LL-37, but its role in CAMP resistance remained unclear. VraDE was proven to be a bacitracin transporter. We also showed that the net positive charge of the cell wall affects the signalrecognition of different TCSs responding to cell envelope stress. Inactivation of the Dlt system responsible for the D-alanylation of teichoic acids had a strong and differential effect on the activity of the studied TCSs, depending on their functional role in cells and the stimuli they sense.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parkinson´s Disease (PD) is a neurodegenerative movement disorder resulting from loss of dopaminergic (DA) neurons in substantia nigra (SN). Possible causative treatment strategies for PD include neurotrophic factors, which protect and in some cases restore the function of dopaminergic neurons. Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors have been to date the most promising candidates for treatment of PD, demonstrating both neuroprotective and neurorestorative properties. We have investigated the role of GDNF in the rodent dopaminergic system and its possible crosstalk with other growth factors. We characterized the GDNF-induced gene expression changes by DNA microarray analysis in different neuronal systems, including in vitro cultured Neuro2A cells treated with GDNF, as well as midbrains from GDNF heterozygous (Hz) knockout mice. These microarray experiments, resulted in the identification of GDNF-induced genes, which were also confirmed by other methods. Further analysis of the dopaminergic system of GDNF Hz mice demonstrated about 40% reduction in GDNF levels, revealed increased intracellular dopamine concentrations and FosB/DeltaFosB expression in striatal areas. These animals did not show any significant changes in behavioural analysis of acute and repeated cocaine administration on locomotor activity, nor did they exhibit any changes in dopamine output following treatment with acute cocaine. We further analysed the significance of GDNF receptor RET signalling in dopaminergic system of MEN2B knock-in animals with constitutively active Ret. The MEN2B animals showed a robust increase in extracellular dopamine and its metabolite levels in striatum, increased tyrosine hydroxylase (TH) and dopamine transporter (DAT) protein levels by immunohistochemical staining and Western blotting, as well as increased Th mRNA levels in SN. MEN2B mice had increased number of DA neurons in SN by about 25% and they also exhibited increased sensitivity to the stimulatory effects of cocaine. We also developed a semi-throughput in vitro micro-island assay for the quantification of neuronal survival and TH levels by computer-assisted methodology from limited amounts of tissue. This assay can be applied for the initial screening for dopaminotrophic molecules, as well as chemical drug library screening. It is applicable to any neuronal system for the screening of neurotrophic molecules. Since our microarray experiments revealed possible GDNF-VEGF-C crosstalk we further concentrated on studying the neurotrophic effects of VEGF-C. We showed that VEGF-C acts as a neurotrophic molecule for the DA neurons both in vitro and in vivo, however without additive effect when used together with GDNF. The neuroprotective effect for VEGF-C in vivo in rat 6-OHDA model of PD was demonstrated. The possible signalling mechanisms of VEGF-C in the nervous system were investigated - infusion of VEGF-C to rat brain induced ERK activation, however no direct activation of RET signalling in vitro was found. VEGF-C treatment of rat striatum lead to up-regulation of VEGFR-1-3, indicating that VEGF-C can regulate the expression level of its own receptor. VEGF-C dopaminotrophic activity in vivo was further supported by increased vascular tissue in the neuroprotection experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuropeptide F is the most abundant neuropeptide in parasitic flatworms and is analogous to vertebrate neuropeptide Y. This paper examines the effects of neuropeptide F on tetrathyridia of the cestode Mesocestoides vogae and provides preliminary data on the signalling mechanisms employed. Neuropeptide F ( greater than or equal to 10 muM) had profound excitatory effects on larval motility in vitro. The effects were insensitive to high concentrations (I mM) of the anaesthetic procame hydrochloride suggesting extraneuronal sites of action. Neuropeptide F activity was not significantly blocked by a FMRFamide-related peptide analog (GNFFRdFamide) that was found to inhibit GNFFRFamide-induced excitation indicating the occurrence of distinct neuropeptide F and FMRFamide-related peptide receptors. Larval treatment with guanosine 5'-O-(2-thiodiphosphate) trilithium salt prior to the addition of neuropeptide F completely abolished the excitatory effects indicating the involvement of G-proteins and a G-protein coupled receptor in neuropeptide F activity. Addition of guanosine 5'-O-(2-thiodiphosphate) following neuropeptide F had limited inhibitory effects consistent with the activation of a signalling cascade by the neuropeptide. With respect to Ca2+ involvement in neuropeptide F-induced excitation of M. vogae larvae, the L-type Ca2+-channel blockers verapamil and nifedipine both abolished neuropeptide F activity as did high Mg+ concentrations and drugs which blocked sarcoplasmic reticulum Ca2+-activated Ca2+-channels (ryanodine) and sarcoplasmic reticulum Ca2+ pumps (cyclopiazonic acid). Therefore, both extracellular and intracellular Ca2+ is important for neuropeptide F excitation in M. vogae. With resepct to second messengers, the protein kinase C inhibitor chelerythrine chloride and the adenylate cyclase inhibitor MDL-2330A both abolished neuropeptide F-induced excitation. The involvement of a signalling pathway that involves protein kinase C was further supported by the fact that phorbol-12-myristate-13-acetate,known to directly activate protein kinase C, had direct excitatory effects on larval motility. Although neuropeptide F is structurally analogous to neuropeptide Y, its mode-of-action in flatworms appears quite distinct from the common signalling mechanism seen in vertebrates. (C) 2003 on behalf of Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epithelial to mesenchymal transition (EMT) is a process whereby epithelial cells undergo transition to a mesenchymal phenotype and contribute directly to fibrotic disease. Recent studies support a role for EMT in cutaneous fibrotic diseases including scleroderma and hypertrophic scarring, though there is limited data on the cytokines and signalling mechanisms regulating cutaneous EMT. We investigated the ability of TGF-β and TNF-α, both over-expressed in cutaneous scleroderma and central mediators of EMT in other epithelial cell types, to induce EMT in primary keratinocytes and studied the signalling mechanisms regulating this process. TGF-β induced EMT in normal human epidermal keratinocytes (NHEK cells) and this process was enhanced by TNF-α. EMT was characterised by changes in morphology, proteome (down-regulation of E-cadherin and Zo-1, and up-regulation of vimentin and fibronectin), MMP secretion and COL1α1 mRNA expression. TGF-β and TNF-α in combination activated SMAD and p38 signalling in NHEK cells. P38 inhibition with SB203580 partially attenuated EMT, whereas SMAD inhibition using SB431542 significantly inhibited EMT and also reversed established EMT. These data highlight the retained plasticity of adult keratinocytes and support further studies of EMT in clinically relevant in vivo models of cutaneous fibrosis, and investigation of SMAD inhibition as a potential therapeutic intervention. This article is protected by copyright. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le GABA est le principal neurotransmetteur inhibiteur du SNC et est impliqué dans le développement du cerveau, la plasticité synaptique et la pathogénèse de maladies telles que l’épilepsie, les troubles de l’anxiété et la douleur chronique. Le modèle actuel de fonctionnement du récepteur GABA-B implique l’hétérodimérisation GABA-B1/B2, laquelle est requise au ciblage à la surface membranaire et au couplage des effecteurs. Il y est cependant des régions du cerveau, des types cellulaires et des périodes du développement cérébral où la sous-unité GABA-B1 est exprimée en plus grande quantité que GABA-B2, ce qui suggère qu’elle puisse être fonctionnelle seule ou en association avec des partenaires inconnus, à la surface cellulaire ou sur la membrane réticulaire. Dans le cadre de cette thèse, nous montrons la capacité des récepteurs GABA-B1 endogènes à activer la voie MAPK-ERK1/2 dans la lignée dérivée de la glie DI-TNC1, qui n’exprime pas GABA-B2. Les mécanismes qui sous-tendent ce couplage demeurent mal définis mais dépendent de Gi/o et PKC. L’immunohistochimie de récepteurs endogènes montre par ailleurs que des anticorps GABA-B1 dirigés contre la partie N-terminale reconnaissent des protéines localisées au RE tandis des anticorps C-terminaux (CT) marquent une protéine intranucléaire. Ces données suggèrent que le domaine CT de GABA-B1 pourrait être relâché par protéolyse. L’intensité des fragments potentiels est affectée par le traitement agoniste tant en immunohistochimie qu’en immunobuvardage de type western. Nous avons ensuite examiné la régulation du clivage par le protéasome en traitant les cellules avec l’inhibiteur epoxomicine pendant 12 h. Cela a résulté en l’augmentation du marquage intranucléaire de GABA-B1-CT et d’un interacteur connu, le facteur de transcription pro-survie ATF-4. Dans des cellules surexprimant GABA-B1-CT, l’induction et la translocation nucléaire d’ATF-4, qui suit le traitement epoxomicine, a complètement été abolie. Cette observation est associée à une forte diminution du décompte cellulaire. Étant donné que les trois derniers résidus de GABA-B1-CT (LYK) codent un ligand pseudo-PDZ et que les protéines à domaines PDZ sont impliquées dans la régulation du ciblage nucléaire et de la stabilité de protéines, en complément de leur rôle d’échaffaud à la surface cellulaire, nous avons muté les trois derniers résidus de GABA-B1-CT en alanines. Cette mutation a complètement annulé les effets de GABA-B1-CT sur l’induction d’ATF-4 et le décompte cellulaire. Cette deuxième série d’expériences suggère l’existence possible de fragments GABA-B1 intranucléaires régulés par le traitement agoniste et le protéasome dans les cellules DI-TNC1. Cette régulation d’ATF-4 dépend des résidus LYK de GABA-B1-CT, qui modulent la stabilité de GABA-B1-CT et favorisent peut-être la formation d’un complexe multiprotéique incluant GABA-B1-CT, ATF-4, de même qu’une protéine d’échaffaudage inconnue. En somme, nous démontrons que les sous-unités GABA-B1 localisées au RE, lorsque non-hétérodimérisées avec GABA-B2, demeurent capables de moduler les voies de signalisation de la prolifération, la différentiation et de la survie cellulaire, via le couplage de protéines G et possiblement la protéolyse régulée. Les mécanismes de signalisation proposés pourraient servir de nouvelle plate-forme dans la compréhension des actions retardées résultant de l’activation des récepteurs 7-TMs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Connue pour son rôle dans la cascade de coagulation, la thrombine, une protéase à sérine, peut également agir par l’intermédiaire de PAR1, un récepteur activé par protéase et couplé aux protéines G liant le GTP (GPCR). La thrombine se lie et clive l’extrémité N-terminale du PAR1 entre l’Arg41 et la Ser42, exposant une nouvelle extrémité terminale qui agit elle-même comme un ligand. La thrombine et une séquence peptidique de cinq acides aminés, composée des résidus Ser42 à Arg46, nommée PAR1-AP, déclenchent dans diverses cellules de mammifères une réponse intracellulaire comportant une composante calcique. Dans cette étude, le système d’expression par baculovirus dans les cellules Sf9 d'insecte nous a permis d'exprimer le récepteur PAR1 du rat à la surface de ces cellules et de réaliser son couplage fonctionnel à leur signalisation intracellulaire (modèle rPAR1-Sf9). La composante calcique de celle-ci, en réponse au PAR1-AP, a ensuite été étudiée en détail à l’aide de la sonde fluorescente Fura-2 et de plusieurs inhibiteurs agissant sur les canaux calciques ou d'autres éléments de la cascade de signalisation du calcium intracellulaire. Lorsque le milieu extracellulaire contient du calcium (Ca2+), la thrombine ou PAR1-AP déclenchent un signal calcique qui consiste en une augmentation rapide de [Ca2+]i suivi d’un plateau relativement soutenu, puis d'un retour lent vers le niveau de base initial. En l'absence de Ca2+ dans le milieu extracellulaire, l'augmentation initiale rapide de [Ca2+]i est suivie d'un retour rapide vers le [Ca2+]i de base. À l’aide d’inhibiteurs de canaux calciques, tels que le lanthane, la nifédipine et le D-600, l'entrée du calcium du milieu extracellulaire dans les cellules est inhibée, abolissant le plateau soutenu de [Ca2+]i. L’inhibition de la pompe Ca2+-ATPase par la thapsigargine supprime la réponse au PAR1-AP après épuisement des sites de stockage de Ca2+intracellulaire. Le TMB-8 agit de façon discordante quant à l’inhibition de la libération de Ca2+ des sites de stockage intracellulaires. La réponse à PAR1-AP n’est pas affectée par le D-609, un inhibiteur de la phospholipase β. L’inhibition de la protéine kinase C (PKC) par le bisindolylmaléimide induit des oscillations en présence de Ca2+ extracellulaire et atténue fortement le signal calcique en absence de Ca2+ extracellulaire. En présence de Ca2+ extracellulaire, l’activation de la PKC par le PBDu tronque le flux de [Ca2+]i tandis que la réponse calcique est abolie en absence de Ca2+ dans le milieu extracellulaire. Le H-89, un inhibiteur de la protéine kinase A (PKA), cause une prolongation de la durée du plateau de [Ca2+]i dans un milieu riche en calcium et la suppression de la réponse à PAR1-AP lorsque le milieu extracellulaire est dépourvu de Ca2+. Les résultats obtenus nous permettent de conclure que la PKC et possiblement la PKA jouent un rôle critique dans la mobilisation du Ca2+ induite par le PAR1-AP dans le modèle rPAR1-Sf9.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. METHODS: Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor) and/or LY294002 (Akt inhibitor) and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione) determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. RESULTS: We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. CONCLUSION: These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: Myostatin, a member of the transforming growth factor-beta (TGF-beta) family, plays a key role in skeletal muscle myogenesis by limiting hyperplastic and hypertrophic muscle growth. In cardiac muscle, myostatin has been shown to limit agonist-induced cardiac hypertrophic growth. However, its role in cardiac hyperplastic growth remains undetermined. The aim of this study was to characterise the expression of myostatin in developing myocardium, determine its effect on cardiomyocyte proliferation, and explore the signalling mechanisms affected by myostatin in dividing cardiomyocytes. Methods: We used quantitative PCR and Western blotting to study the expression of myostatin in cardiomyocytes isolated from rat myocardium at different developmental ages. We. determined the effect of recombinant myostatin on proliferation and cell viability in dividing cardiomyocytes in culture. We analysed myostatin's effect on cardiomyocyte cell cycle progression by flow cytometry and used Western blotting to explore the signalling mechanisms involved. Results: Myostatin is expressed differentially in cardiomyocytes during cardiac development such that increasing expression correlated with a low cardiomyocyte proliferation index. Proliferating foetal cardiomyocytes, from embryos at 18 days of gestation, expressed low levels of myostatin mRNA and protein, whereas isolated cardiomyocytes from postnatal day 10 hearts, wherein the majority of cardiomyocytes have lost their ability to proliferate, displayed a 6-fold increase in myostatin expression. Our in vitro studies demonstrated that myostatin inhibited proliferation of dividing foetal and neonatal cardiomyocytes. Flow cytometric analysis showed that this inhibition occurs mainly via a block in the G1-S phase transition of the cardiomyocyte cell cycle. Western blot analysis showed that part of the mechanism underpinning the inhibition of cardiomyocyte proliferation by myostatin involves phosphorylation of SMAD2 and altered expressions of the cell cycle proteins p21 and CDK2. Conclusions: We conclude that myostatin is an inhibitor of cardiomyocyte proliferation with the potential to limit cardiomyocyte hyperplastic growth by altering cardiac cell cycle progression. (c) 2007 European Society of Cardiology. Published by Elsevier B.V. All fights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcium (Ca2+) is a critical regulator of many aspects of the Plasmodium reproductive cycle. In particular, intra-erythrocyte Plasmodium parasites respond to circulating levels of the melatonin in a process mediated partly by intracellular Ca2+. Melatonin promotes the development and synchronicity of parasites, thereby enhancing their spread and worsening the clinical implications. The signalling mechanisms underlying the effects of melatonin are not fully established, although both Ca2+ and cyclic AMP (cAMP) have been implicated. Furthermore, it is not clear whether different strains of Plasmodium use the same, or divergent, signals to control their development. The aim of this study was to explore the signalling mechanisms engaged by melatonin in P. chabaudi, a virulent rodent parasite. Using parasites at the throphozoite stage acutely isolated from mice erythrocytes, we demonstrate that melatonin triggers cAMP production and protein kinase A (PKA) activation. Interestingly, the stimulation of cAMP/PKA signalling by melatonin was dependent on elevation of Ca2+ within the parasite, because buffering Ca2+ changes using the chelator BAPTA prevented cAMP production in response to melatonin. Incubation with melatonin evoked robust Ca2+ signals within the parasite, as did the application of a membrane-permeant analogue of cAMP. Our data suggest that P. chabaudi engages both Ca2+ and cAMP signalling systems when stimulated by melatonin. Furthermore, there is positive feedback between these messengers, because Ca2+ evokes cAMP elevation and vice versa. Melatonin more than doubled the observed extent of parasitemia, and the increase in cAMP concentration and PKA activation was essential for this effect. These data support the possibility to use melatonin antagonists or derivates in therapeutic approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the influence of muscle glycogen concentration on whole body insulin stimulated glucose uptake in humans and to examine the potential signalling mechanisms responsible for enhanced insulin action in the post exercise period. Untrained male subjects were conditioned to achieve a range of muscle glycogen concentrations via acute exercise or a combination of exercise and diet. The influence of muscle glycogen content on whole body insulin stimulated glucose uptake was determined via hyperinsulinaemic / euglycaemic clamps conducted at rest, 30 min after exercise or 24 hours after exercise. Muscle glycogen content did not influence insulin mediated glucose disposal either 30 min or 24 hrs after exercise when compared with basal. Conventional insulin signalling to muscle glucose uptake and signalling through the p38 MAPK cascade was also largely unaltered by glycogen concentration. Muscle glycogen synthesis was significantly increased in heavily but not moderately glycogen depleted muscle 30 min after exercise. Enhanced muscle glycogen synthesis occurred in line with a significant increase in insulin stimulated GSK-3 serine phosphorylation. This finding suggests that enhanced insulin sensitivity of muscle glycogen synthesis following glycogen depleting exercise may be mediated via a pathway involving alterations in insulin stimulated GSK-3 phosphorylation. In summary, whilst glycogen influences insulin mediated GSK-3 phosphorylation and glycogen synthesis, the findings of the present series of investigations suggest that the role of muscle glycogen in the process of insulin stimulated glucose uptake may not be as important as previously theorised.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skeletal muscle adaptations to exercise confer many of the health benefits of physical activity and occur partly through alterations in skeletal muscle gene expression. The exact mechanisms mediating altered skeletal muscle gene expression in response to exercise are unknown. However, in recent years, chromatin remodelling through epigenetic histone modifications has emerged as a key regulatory mechanism controlling gene expression in general. The purpose of this study was to examine the effect of exercise on global histone modifications that mediate chromatin remodelling and transcriptional activation in human skeletal muscle in response to exercise. In addition, we sought to examine the signalling mechanisms regulating these processes. Following 60 min of cycling, global histone 3 acetylation at lysine 9 and 14, a modification associated with transcriptional initiation, was unchanged from basal levels, but was increased at lysine 36, a site associated with transcriptional elongation. We examined the regulation of the class IIa histone deacetylases (HDACs), which are enzymes that suppress histone acetylation and have been implicated in the adaptations to exercise. While we found no evidence of proteasomal degradation of the class IIa HDACs, we found that HDAC4 and 5 were exported from the nucleus during exercise, thereby removing their transcriptional repressive function. We also observed activation of the AMP-activated protein kinase (AMPK) and the calcium–calmodulin-dependent protein kinase II (CaMKII) in response to exercise, which are two kinases that induce phosphorylation-dependent class IIa HDAC nuclear export. These data delineate a signalling pathway that might mediate skeletal muscle adaptations in response to exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The diaphragm is the major respiratory muscle affected by Duchenne muscular dystrophy (DMD) and is responsible for causing 80% of deaths. The use of mechanical forces that act on the body or intermittent pressure on the airways improves the quality of life of patients but does not prevent the progression of respiratory failure. Thus, diseases that require tissue repair, such as DMD, represent a group of pathologies that have great potential for cell therapy. The application of stem cells directly into the diaphragm instead of systemic application can reduce cell migration to other affected areas and increase the chances of muscle reorganisation. The mdx mouse is a suitable animal model for this research because its diaphragmatic phenotype is similar to human DMD. Therefore, the aim of this study was to assess the potential cell implantation in the diaphragm muscle after the xenotransplantation of stem cells. Methods: A total of 9 mice, including 3 control BALB/Cmice, 3 5-month-old mdx mice without stem cell injections and 3 mdx mice injected with stem cells, were used. The animals injected with stem cells underwent laparoscopy so that stem cells from GFP-labelled rabbit olfactory epithelium could be locally injected into the diaphragm muscle. After 8 days, all animals were euthanised, and the diaphragm muscle was dissected and subjected to histological and immunohistochemical analyses. Results: Both the fresh diaphragm tissue and immunohistochemical analyses showed immunopositive GFP labelling of some of the cells and immunonegativity of myoblast bundles. In the histological analysis, we observed a reduction in the inflammatory infiltrate as well as the presence of a few peripheral nuclei and myoblast bundles. Conclusion: We were able to implant stem cells into the diaphragm via local injection, which promoted moderate muscle reorganisation. The presence of myoblast bundles cannot be attributed to stem cell incorporation because there was no immunopositive labelling in this structure. It is believed that the formation of the bundles may have been stimulated by cellular signalling mechanisms that have not yet been elucidated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Specific inhibition of platelet function is a major target of anti-thrombotic drug research. Platelet receptors are both accessible and specific but have multiple functions often linked to a wide range of ligands. GPIb complex is best known as a major platelet receptor for von Willebrand factor essential for platelet adhesion under high shear conditions found in arteries and in thrombosis. Recent animal studies have supported inhibition of GPIb as a good candidate for anti-thrombotic drug development with several classes of proteins showing important specific effects and the required discrimination between roles in haemostasis and thrombosis is important to protect against bleeding complications. These include antibodies, several classes of snake venom proteins, mutant thrombin molecules and peptides affecting subunit interactions. However, due to the nature of its receptor-ligand interactions involving large protein-protein interfaces, the possibility of developing classic pharmaceutical inhibitors for long term (and perhaps oral) treatment is still unclear, and additional information about structural interactions and signalling mechanisms is essential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABAB receptors inhibit calcium-mediated electrogenesis (Ca2+ spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca2+ spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca2+ imaging we found that all subtypes of VDCCs were present in the Ca2+ spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca2+ spikes. Particularly, Cav1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca2+ spike. Activation of GABAB receptors specifically inhibited Cav1 channels. This inhibition of L-type Ca2+ currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the Gi/o-βγ-subunit with Cav1 channels identifying this mechanism as the general pathway of GABAB receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca2+ spike provides new insights into the molecular mechanism of dendritic computation.