984 resultados para sexual tail dimorphism
Resumo:
Embora informações acerca da composição das colônias do morcego hematófago Desmodus rotundus (E. Geoffroy, 1810) sejam importantes para o controle de suas populações, poucos estudos a esse respeito foram desenvolvidos no Brasil. São apresentadas aqui informações obtidas de colônias de D. rotundus encontradas em 12 abrigos diurnos no Estado de São Paulo, Brasil, em 1999 e 2000. em geral, os abrigos naturais e artificiais não possuíam grandes dimensões e estruturalmente variaram entre si. O formato dos abrigos interferiu na distribuição dos indivíduos das colônias no interior dos abrigos. Essas colônias continham, em média, 130 indivíduos distribuídos em três locais no interior dos abrigos. Havia também diversos indivíduos vivendo isolados ou em pequenos grupos dispersos. A proporção entre os sexos dos morcegos capturados foi de 1 macho: 1,37 fêmeas e, em sua maioria, os morcegos capturados eram adultos (89%). Dimorfismo sexual foi verificado estatisticamente no comprimento dos antebraços e na massa corporal, sendo as fêmeas maiores que os machos. A maior parte dos machos adultos (87%) estava sexualmente ativo, mas 65,5% das fêmeas adultas não estavam grávidas.
Resumo:
Life-history information constitutes the raw data for building population models used in species conservation. We provide life-history data for the endangered Santa Catalina Island Rattlesnake, Crotalus catalinensis. We use data from 277 observations of C. catalinensis made between 2002 and 2011 on the island. Mean snout-vent length (SVL) of adult C. catalinensis was 643 mm for males and 631 mm for females; the difference was not significant. The degree of sexual size dimorphism (SSD; using SVL) was -0.02. However, sexes were dimorphic in total length ( SVL + tail length), relative tail length, and stoutness. Juvenile recruitment occurs during late-summer. In their first year of life, juveniles seem to grow at a rate of about 1.7 cm/mo. Females seem to become mature around 570 mm SVL, probably in the year when they become 2 y old. Scattered literature data corroborates the time of juvenile recruitment described herein. Growth in C. catalinensis seems to be slower than that of C. ruber, its sister taxa, but similar to other rattlesnakes.
Resumo:
El lenguado de California Paralichthys californicus es una especie con alto valor comercial debido a su gran tamaño y calidad de su carne. Esta especie presenta dimorfismo sexual en el crecimiento donde las hembras crecen más rápido que los machos, por lo tanto el cultivo monosexual de hembras resulta favorable para la producción. En el presente estudio se registró el proceso de diferenciación sexual mediante cortes histológicos de las larvas y gónadas del lenguado de California asimismo se probó el efecto de diferentes concentraciones de 17β-estradiol (E2) (2.5, 5 y 10 mg/kg) a través de la dieta para incrementar la proporción de hembras en el cultivo. A los 25 días después de la eclosión (DDE) se observó el primordio gonadal en ejemplares con una longitud total promedio de 6.96 ± 0.92 mm, hasta el día 75 DDE (37.58 ± 6.58 mm) se observó una gónada indiferenciada evidenciada por la presencia de células germinales primordiales. La primera evidencia de diferenciación se registró a los 115 DDE (55.93 ± 14.67 mm) donde se observó la cavidad ovárica y posteriormente a los 180 DDE (115.70 ± 17.02 mm) se evidencian ovarios con ovocitos en crecimiento y testículos con espermátidas. Por lo tanto, el periodo lábil para la diferenciación sexual se encuentra entre los días 75 y 115 después de la eclosión. Por otro lado, el suministro de E2 a través de la dieta a concentraciones de 2.5, 5 y 10 mg/kg incrementó el porcentaje de hembras de 26.67% (control, no adición de E2) a un 100% en todos los tratamientos. Se encontraron diferencias en la proporción de los tipos celulares (ovogonias, ovocitos primarios en fase I y II) entre el control y los tratamientos mientras que no se registraron alteraciones histológicas como atrofia gonadal en ninguno de los casos.
Resumo:
We studied the structure of a population of Hydromedusa maximiliani associated with a stream in Parque Estadual da Serra do Mar, Nucleo Itutinga-Piloes, southeastern Brazil, between October 2004 and October 2005. Twenty-five individuals were captured, and a population size of 43.72 +/- 23.7 individuals was estimated. This value is similar to that of the population of Parque Estadual Carlos Botelho, another Atlantic forest reserve of southeastern Brazil. Males were recaptured more frequently than females, suggesting higher activity and/or greater movement of males.
Resumo:
The reproductive pattern of Elachistocleis bicolor (Guérin Méneville, 1838) was studied at Serra da Bodoquena, from October 2000 to September 2001. Reproduction occurred in the wet season (October to April) and was correlated to high continuous pluviometric precipitation. The species presents sexual size dimorphism, with females larger than males. The number of mature eggs per ovary was 620 ± 251 (n=39) and mature eggs measured 1.15 ± 0.30 mm (n=40). Elachistocleis bicolor presented significant relations between snout-vent length and number of mature eggs (n=39; r²=0.25; p=0.001), individual weight and number of mature eggs (n=41, r²=0.30; p=0.002), snout-vent length and ovarian weight (n=35; r²=0.47; p<0.01), and individual weight and ovarian weight (n=36; r²=0.55; p<0.01). Weight and volume are better to study size-fecundity relationships than snout-vent length. The females invested 22.7 ± 6.3 % (n=35) of their weights in reproduction and the variance associated to this variable was high, related to the reproductive mode of the species.
Resumo:
Adult dry weights of laboratory-reared Anopheles darlingi were highly correlated with wing lengths, which were used to estimate size variation in natural populations of this species. Significant differences in mean wing lengths of females trapped at baits were detected among collections in the same week at one site, but not between three sites in Brazil and Boliva. Relatively higher variability of wing lengths, compared to collections of other Anopheles (Nyssorhynchus), and platykurtic size distributions in large, single-night collections suggested that An. darlingi females caught at baits emerged from heterogenous larval habitats. No relationship was detected between parous state and the body size of wild-caught females. Adult males and females of laboratory-reared An. darlingi did not differ in body size. This absence of sexual size dimorphism is rare among mosquitoes and has not been noted previously in the genus Anopheles.
Resumo:
The finding of Panstrongylus geniculatus nymphs inside a house in northeastern Antioquia, Colombia, and the reports related to their increasing presence in homes suggest the need for surveillance methods for monitoring the invasion processes. We analyzed the morphological differences between a wild population and its laboratory descendants, using the techniques of geometric morphometry, with the idea that such differences might parallel those between sylvatic and synanthropic populations. The analyses over five generations showed differences in size but not in shape. Head size and wing size were both reduced from sylvatic to laboratory populations, but the decrease in head size occurred only up to the second generation while the decrease in wing size proceeded up to the fifth generation. In contrast, although a decrease in sexual size dimorphism has been proposed as a marker of colonization in human dwellings, we did not detect any significant loss of dimorphism between sexes of P. geniculatus over the five generations studied. We conclude that size changes may have a physiological origin in response to a change of ecotopes, but more than five generations may be required for the expression of permanent morphological markers of human dwellings colonization.
Sex-specific selective pressures on body mass in the greater white-toothed shrew, Crocidura russula.
Resumo:
The direction, intensity and shape of viability-, sexual- and fecundity selection on body mass were investigated in a natural population of the greater white-toothed shrew (Crocidura russula), combining parentage assignment through molecular techniques and mark-recapture data over several generations. A highly significant stabilizing viability selection was found in both sexes, presumably stemming from the constraints imposed by their insectivorous habits and high metabolic costs. Sexual selection, directional in both sexes, was twice as large in males than in females. Our results suggest that body mass matters in this context by facilitating the acquisition and defense of a breeding territory. No fecundity selection could be detected. The direction of sexual size dimorphism (SSD) was in agreement with the observed pattern of selective pressures: males were heavier than females, because of stronger sexual selection. SSD intensity, however, was low compared with other mammals, because of the low level of polygyny, the active role of females in territory defense and the intensity of stabilizing viability selection.
Resumo:
In terrestrial snakes, many cases of intraspecific shifts in dietary habits as a function of predator sex and body size are driven by gape-limitation - and hence, are most common in species that feed on relatively large prey, and exhibit a wide body-size range. Our data on seasnakes reveal an alternative mechanism for intraspecific niche partitioning, based on sex-specific seasonal anorexia induced by reproductive activities. Turtle-headed seasnakes (Emydocephalus annulatus) on coral reefs in the New Caledonian Lagoon feed entirely on the eggs of demersal-spawning fishes. DNA sequence data (cytochrome b gene) on eggs that we palpated from stomachs of 37 snakes showed that despite this ontogenetic-stage specialization, the prey come from a taxonomically diverse array of species including damselfish (41% of samples, at least 5 species), blennies (41%, 4 species) and gobies (19%, 5 species). The composition of snake diets shifted seasonally (with damselfish dominating in winter but not summer), presumably reflecting seasonality of fish reproduction. That seasonal shift affects male and female snakes differently, because reproduction is incompatible with foraging. Adult female seasnakes ceased feeding when they became heavily distended with developing embryos in late summer, and males ceased feeding while they were mate-searching in winter. The sex divergence in foraging habits may be amplified by sexual size dimorphism; females grow larger than males, and larger snakes (of both sexes) feed more on damselfish (which often lay their eggs in exposed sites) than on blennies and gobies (whose eggs are hidden within narrow crevices). Specific features of reproductive biology of coral-reef fish (seasonality and nest type) have generated intraspecific niche partitioning in these seasnakes, by mechanisms different from those that apply to terrestrial snakes.
Resumo:
Male-biased sexual size dimorphism is typical of polygynous mammals, where the degree of dimorphism in body mass is related to male intrasexual competition and the degree of polygyny. However, the importance of body mass in monogamous mammals is largely unknown. We investigated the effect of body mass on life-history parameters and territory size in the red fox (Vulpes vulpes), a socially monogamous canid with slight sexual dimorphism. Increased body size in males appeared to confer an advantage in territory acquisition and defense contests because heavier males held larger territories and exerted a greater boundary pressure on smaller neighbors. Heavier male foxes invested more effort in searching for extrapair matings by moving over a wider area and farther from their territories, leading to greater reproductive success. Males that sired cubs outside their own social group appeared to be heavier than males that only sired cubs within their social group or that were cuckolded, but our results should be treated with caution because sample sizes were small. Territory size, boundary pressure, and paternity success were not related to age of males. In comparison, body mass of females was not related to territory size, probability of breeding, litter size, or cub mass. Only age affected probability of breeding in females: younger females reproduced significantly less than did older females, although we did not measure individual nutritional status. Thus, body mass had a significant effect on life-history traits and territory size in a socially monogamous species comparable to that reported in polygynous males, even in the absence of large size dimorphism.
Resumo:
Rensch’s rule, which states that the magnitude of sexual size dimorphism tends to increase with increasing body size, has evolved independently in three lineages of large herbivorous mammals: bovids (antelopes), cervids (deer), and macropodids (kangaroos). This pattern can be explained by a model that combines allometry,life-history theory, and energetics. The key features are thatfemale group size increases with increasing body size and that males have evolved under sexual selection to grow large enough to control these groups of females. The model predicts relationships among body size and female group size, male and female age at first breeding,death and growth rates, and energy allocation of males to produce body mass and weapons. Model predictions are well supported by data for these megaherbivores. The model suggests hypotheses for why some other sexually dimorphic taxa, such as primates and pinnipeds(seals and sea lions), do or do not conform to Rensh’s rule.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The examination of telomere dynamics is a recent technique in ecology for assessing physiological state and age-related traits from individuals of unknown age. Telomeres shorten with age in most species and are expected to reflect physiological state, reproductive investment, and chronological age. Loss of telomere length is used as an indicator of biological aging, as this detrimental deterioration is associated with lowered survival. Lifespan dimorphism and more rapid senescence in the larger, shorter-lived sex are predicted in species with sexual size dimorphism, however, little is known about the effects of behavioral dimorphism on senescence and life history traits in species with sexual monomorphism. Here we compare telomere dynamics of thick-billed murres (Uria lomvia), a species with male-biased parental care, in two ways: 1) cross-sectionally in birds of known-age (0-28 years) from one colony and 2) longitudinally in birds from four colonies. Telomere dynamics are compared using three measures: the telomere restriction fragment (TRF), a lower window of TRF (TOE), and qPCR. All showed age-related shortening of telomeres, but the TRF measure also indicated that adult female murres have shorter telomere length than adult males, consistent with sex-specific patterns of ageing. Adult males had longer telomeres than adult females on all colonies examined, but chick telomere length did not differ by sex. Additionally, inter-annual telomere changes may be related to environmental conditions; birds from a potentially low quality colony lost telomeres, while those at more hospitable colonies maintained telomere length. We conclude that sex-specific patterns of telomere loss exist in the sexually monomorphic thick-billed murre but are likely to occur between fledging and recruitment. Longer telomeres in males may be related to their homogamous sex chromosomes (ZZ) or to selection for longer life in the care-giving sex. Environmental conditions appeared to be the primary drivers of annual changes in adult birds.
Resumo:
Sexual segregation in habitat use occurs in a number of animal species, including southern elephant seals, where differences in migration localities and dive behaviour between sexes have been recorded. Due to the extreme sexual size dimorphism exhibited by southern elephant seals, it is unclear whether observed differences in dive behaviour are due to increased physiological capacity of males, compared to females, or differences in activity budgets and foraging behaviour. Here we use a mixed-effects modelling approach to investigate the effects of sex, size, age and individual variation on a number of dive parameters measured on southern elephant seals from Marion Island. Although individual variation accounted for substantial portions of total model variance for many response variables, differences in maximum and targeted dive depths were always influenced by sex, and only partly by body length. Conversely, dive durations were always influenced by body length, while sex was not identified as a significant influence. These results support hypotheses that physiological capability associated with body size is a limiting factor on dive durations. However, differences in vertical depth use appear to be the result of differences in forage selection between sexes, rather than a by-product of the size dimorphism displayed by this species. This provides further support for resource partitioning and possible avoidance of inter-sexual competition in southern elephant seals.
Resumo:
The interactions between host individual, host population, and environmental factors modulate parasite abundance in a given host population. Since adult exophilic ticks are highly aggregated in red deer (Cervus elaphus) and this ungulate exhibits significant sexual size dimorphism, life history traits and segregation, we hypothesized that tick parasitism on males and hinds would be differentially influenced by each of these factors. To test the hypothesis, ticks from 306 red deer-182 males and 124 females-were collected during 7 years in a red deer population in south-central Spain. By using generalized linear models, with a negative binomial error distribution and a logarithmic link function, we modeled tick abundance on deer with 20 potential predictors. Three models were developed: one for red deer males, another for hinds, and one combining data for males and females and including "sex" as factor. Our rationale was that if tick burdens on males and hinds relate to the explanatory factors in a differential way, it is not possible to precisely and accurately predict the tick burden on one sex using the model fitted on the other sex, or with the model that combines data from both sexes. Our results showed that deer males were the primary target for ticks, the weight of each factor differed between sexes, and each sex specific model was not able to accurately predict burdens on the animals of the other sex. That is, results support for sex-biased differences. The higher weight of host individual and population factors in the model for males show that intrinsic deer factors more strongly explain tick burden than environmental host-seeking tick abundance. In contrast, environmental variables predominated in the models explaining tick burdens in hinds.