997 resultados para root density


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O desenvolvimento das cultivares de guandu IAC-Fava Larga (C1), ICP-7035 (C3) e daiinhagem IAC-87318 (C2) foi estudado em três idades, aos 14,28 e 42 dias após a semeadura, em casa de vegetação. Foram avaliados os seguintes parâmetros: altura (cm), número de folhas, área foliar (dm²), densidade de raízes (cm de raiz/cm³ de substrato) e massa seca (g) de caules, lâminas foliares e raízes. O experimento foi conduzido em delineamento inteiramente casualizado, com três repetições. As médias das medidas de crescimento das cultivares foram comparadas entre si, pelo teste de Tukey, em cada idade, tendo a cultivar C2 apresentado maior crescimento do sistema radicular e da parte aérea, aos 14, 28 e 42 dias. As cultivares C3 e C1, apresentaram plântulas menos vigorosas e com menor quantidade de raízes. Os sistemas radiculares de C1, C2 e C3 alcançaram cerca de 60cm de profundidade, aos 14 dias, e os de C2 e C3 no final do experimento, aos 42 dias, quando atingiram 100cm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avaliou-se o efeito do nitrogênio no sistema radicular da espécie Panicum maximum Jacq. cv. IPR-86 Milênio, sob pastejo. As doses de N utilizadas foram 0; 150; 300 e 450 kg/ha.ano. As densidades de raízes no pré-pastejo foram avaliadas no quinto ano de aplicação de N, em três profundidades (0-10; 10-20 e 20-40 cm), com crescimento aos 7; 14; 21 e 35 dias após o pastejo. O método de pastejo utilizado foi o de lotação rotacionada. Os valores máximos de densidades de comprimento e de massa das raízes no pré e no pós-pastejo foram obtidos nas doses de N de 204; 206; 192 e 197 kg/ha, respectivamente. Nas doses de N de 0, 150 e 300 kg/ha, o crescimento das raízes (em densidade de comprimento) aumentou, em média, até 29 dias após o pastejo, enquanto, na dose 450 kg/ha, o aumento foi linear. Independentemente da dose de N, 60 a 25% do sistema radicular do cultivar IPR-86 Milênio concentrou-se nas camadas de 0-10 e 10-20 cm de profundidade, respectivamente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction. Pitaya (Hylocereus undatus) is an exotic fruit species little known in Brazil and which needs basic studies about plant nutrition, propagation and physiology. Emphasizing the co-existence of juvenile and adult stages in the pitaya canopy, the plant is generally propagated by cuttings. Materials and methods. A completely randomized design with four treatments and five replications was adopted. Each treatment was represented by the part of the canopy from which the cutting was taken ( upper, middle and lower cutting and cuttings from young plants). The following variables were registered: % cuttings with roots, % of live cuttings, root density, root diameter, root area, root length and root dry mass. Results were submitted to variance analyses, Tukey's test at 0.01 probability error and simple correlation analysis. Results and discussion. The results indicated that the position from which the cutting is taken had a quantitative effect on rooting formation of pitaya cuttings. Juvenile cuttings presented 35% more cuttings with roots than adult cuttings. Root density, root area, root length and root dry mass depended on juvenility, the highest results being registered for juvenile cuttings, independently of the variable. Conclusion. Juvenile and adult stages co-exist in the pitaya canopy. Juvenility is an important rooting factor for red pitaya cuttings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5-3.0 m deep. The root intersects were counted on 224 m(2) of trench walls in 15 pits. Monitoring the soil water content showed that, after clear cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At ecosystem level soil respiration (Rs) represents the largest carbon (C) flux after gross primary productivity, being mainly generated by root respiration (autotrophic respiration, Ra) and soil microbial respiration (heterotrophic respiration, Rh). In the case of terrestrial ecosystems, soils contain the largest C-pool, storing twice the amount of C contained in plant biomass. Soil organic matter (SOM), representing the main C storage in soil, is decomposed by soil microbial community. This process produces CO2 which is mainly released as Rh. It is thus relevant to understand how microbial activity is influenced by environmental factors like soil temperature, soil moisture and nutrient availability, since part of the CO2 produced by Rh, directly increases atmospheric CO2 concentration and therefore affects the phenomenon of climate change. Among terrestrial ecosystems, agricultural fields have traditionally been considered as sources of atmospheric CO2. In agricultural ecosystems, in particular apple orchards, I identified the role of root density, soil temperature, soil moisture and nitrogen (N) availability on Rs and on its two components, Ra and Rh. To do so I applied different techniques to separate Rs in its two components, the ”regression technique” and the “trenching technique”. I also studied the response of Ra to different levels of N availability, distributed either in a uniform or localized way, in the case of Populus tremuloides trees. The results showed that Rs is mainly driven by soil temperature, to which it is positively correlated, that high levels of soil moisture have inhibiting effects, and that N has a negligible influence on total Rs, as well as on Ra. Further I found a negative response of Rh to high N availability, suggesting that microbial decomposition processes in the soil are inhibited by the presence of N. The contribution of Ra to Rs was of 37% on average.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminum phytotoxicity frequently occurs in acid soils (pH < 5.5) and was therefore discussed to affect ecosystem functioning of tropical montane forests. The susceptibility to Al toxicity depends on the sensitivity of the plant species and the Al speciation in soil solution, which can vary highly depending e.g., on pH, ionic strength, and dissolved organic matter. An acidification of the ecosystem and periodic base metal deposition from Saharan dust may control plant available Al concentrations in the soil solutions of tropical montane rainforests in south Ecuador. The overall objective of my study was to assess a potential Al phytotoxicity in the tropical montane forests in south Ecuador. For this purpose, I exposed three native Al non-accumulating tree species (Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson) to increased Al concentrations (0 – 2400 μM Al) in a hydroponic experiment, I established dose-response curves to estimate the sensitivity of the tree species to increased Al concentrations, and I investigated the mechanisms behind the observed effects induced by elevated Al concentrations. Furthermore, the response of Al concentrations and the speciation in soil solution to Ca amendment in the study area were determined. In a final step, I assessed all major Al fluxes, drivers of Al concentrations in ecosystem solutions, and indicators of Al toxicity in the tropical montane rainforest in Ecuador in order to test for indications of Al toxicity. In the hydroponic experiment, a 10 % reduction in aboveground biomass production occurred at 126 to 376 μM Al (EC10 values), probably attributable to decreased Mg concentrations in leaves and reduced potosynthesis. At 300 μM Al, increased root biomass production of T. chrysantha was observed. Phosphorus concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 μM Al and correlated significantly with root biomass, being a likely reason for stimulated root biomass production. The degree of organic complexation of Al in the organic layer leachate, which is central to plant nutrition because of the high root density, and soil solution from the study area was very high (mean > 99 %). The resulting low free Al concentrations are not likely to affect plant growth, although the concentrations of potentially toxic Al3+ increased with soil depth due to higher total Al and lower dissolved organic matter concentrations in soil solutions. The Ca additions caused an increase of Al in the organic layer leachate, probably because Al3+ was exchanged against the added Ca2+ ions while pH remained constant. The free ion molar ratios of Ca2+:Al3+ (mean ratio ca. 400) were far above the threshold (≤ 1) for Al toxicity, because of a much higher degree of organo-complexation of Al than Ca. High Al fluxes in litterfall (8.8 – 14.2 kg ha−1 yr−1) indicate a high Al circulation through the ecosystem. The Al concentrations in the organic layer leachate were driven by the acidification of the ecosystem and increased significantly between 1999 and 2008. However, the Ca:Al molar ratios in organic layer leachate and all aboveground ecosystem solutions were above the threshold for Al toxicity. Except for two Al accumulating and one non-accumulating tree species, the Ca:Al molar ratios in tree leaves from the study area were above the Al toxicity threshold of 12.5. I conclude that toxic effects in the hydroponic experiment occurred at Al concentrations far above those in native organic layer leachate, shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis, and the stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake. Dissolved organic matter in soil solutions detoxifies Al in acidic tropical forest soils and a wide distribution of Al accumulating tree species and high Al fluxes in the ecosystem do not necessarily imply a general Al phytotoxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Para medir la disponibilidad de los micronutrientes en la zona de mayor densidad radical de los frutales de pepita y carozo y sugerir pautas de manejo que permitan un uso sustentable del recurso suelo, se tomaron muestras representativas de 25 montes cultivados con manzanos a lo largo del Alto Valle del río Negro (Argentina). Se extrajeron muestras a 0-25 y 25-50 cm de profundidad y se determinó la concentración disponible de Fe, Cu, Mn y Zn; granulometría; pH; materia orgánica (MO); carbonatos; P y capacidad de intercambio catiónico (CIC). Los resultados muestran que los micronutrientes se concentran mayoritariamente en la primera capa de suelo analizada, disminuyendo abruptamente en el estrato 25-50 cm. En la capa superficial, la disponibilidad de Cu y Zn está influenciada por el P mientras que el pH afecta la del Fe, Cu, y Mn en el estrato de suelo de 25-50 cm. En conclusión, es posible mejorar la nutrición mineral de los cultivos si se crean condiciones favorables para el crecimiento radical en la capa superficial del suelo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUMEN El ensayo se llevo a acabo en un viñedo de Syrah durante 8 años y en un viñedo de Merlot durante 3 años. Ambos viñedos regados y situados en Colmenar de Oreja (Madrid) (40º 8’N, 3º 23’W) con clima típicamente Mediterráneo. Siete tratamientos con cubiertas vegetales se han comparado con dos tratamientos con suelo desnudo usados como control. Las cubiertas vegetales fueron seis tratamientos de cereales (Centeno) y un tratamiento de enyerbado autosembrado (Bromus spp) y los tratamientos de suelo desnudo fueron uno manejado con laboreo y otro manejado con herbicida. Los seis tratamientos de centeno se han manejado de seis formas distintas. La primera sembrada todos los años y eliminada en brotación mediante herbicida de post-emergencia. La segunda sembrada todos los años y eliminada un mes después de la brotación mediante siega. La tercera sembrada todos los años y eliminada en floración mediante siega. La cuarta sembrada todos los años y eliminada en brotación mediante herbicida de post-emergencia. La quinta sembrada todos los años y eliminada un mes después de la brotación mediante siega. La sexta sembrada todos los años y eliminada en floración mediante siega. La utilización de cubiertas vegetales ha tenido efectos beneficiosos sobre el contenido en materia orgánica, la compactación y la infiltración del suelo, mejorando las condiciones para el desarrollo de las raíces. Estas mejoras y la escasa competencia de la competencia durante el crecimiento del sistema radical de la vid han producido un incremento del sistema radical en las plantas mantenidos con cubierta vegetal. La competencia de las cubiertas vegetales ha reducido la disponibilidad hídrica de la vid, incrementándose la absorción en zonas con mayor disponibilidad hídrica (como la línea) antes de floración. El mayor desarrollo radical de las vides con cubierta autosembrada ha permitido agotar más intensamente las reservas de agua en el suelo. La competencia de las cubiertas ha reducido en mayor medida el desarrollo vegetativo que el productivo. Lo que ha disminuido, en algunas cubiertas vegetales, el consumo hídrico de la vid, aumentando el potencial hídrico foliar y la fotosíntesis durante la maduración. Sin embargo, el incremento en la fotosíntesis no ha compensado el mayor desarrollo foliar de los tratamientos con suelo desnudo, lo que ha provocado que estos tratamientos presenten la producción de materia seca más elevada. El empleo de cubiertas vegetales ha reducido la producción principalmente limitando el número de bayas por racimo, ya que el aporte de riego ha minimizado los efectos del manejo del suelo sobre el tamaño de baya. La utilización de cubiertas vegetales temporales ha mejorado la iluminación de los racimos, lo que ha producido un aumento de la síntesis de antocianos durante las primeras fases de la maduración, pero un incremento de la degradación de los mismos al final de la maduración. Esto ha provocado que durante la vendimia los tratamientos de suelo desnudo presenten un mayor contenido de antocianos por baya que los tratamientos mantenidos con cubierta temporal. Estos resultados muestran que el efecto del manejo del suelo depende en gran medida de las condiciones del medio, y que sus efectos en climas calidos y secos son muy distintos a los observados en climas frescos y húmedos. ABSTRACT The trial was conducted over a period of 8 years in a Syrah vineyard and over a period of 3 years in a Merlot vineyard. Both vineyards were irrigated and situated near Colmenar de Oreja (Madrid) (40º 8’N, 3º 23’W) a typical Mediterranean climate. Seven Annual cover crops treatments were compared to two bare soil treatments, used as control. Cover crops were six cereals treatments (Rye) and one auto-sowing treatment (Bromus spp) and the treatments of bare soil were one tilled management treatment and another with herbicide treatment. The six Cereal treatments were managed in different manners. First sowing every year and were eliminated in bud breaking with post-emergency herbicide. The second sowing annually and were eliminated one month after bud breaking through harvesting. The third sowing annually and were eliminated in flowering by mowing. The fourth sowing annually and were eliminated with post-emergency herbicide in bud breaking. The fifth sowing annually and were eliminated by mowing one month after bud breaking. . The third sowing annually was eliminated by mowing in flowering. The use of annual cover crop have improved soil organic matter, soil infiltration rate and soil solidity, resulting in a more favourable environment for roots growth. These improvements and low competitive ability during root growing have increases grapevine root density in plant management with cover crop. The Cover crop ability reduced plant available water, increasing root water uptake in the soil with more available water (such us line) before flowering. More growth of grapevine root density with auto-sowed cover crops has allowed using the water under soil more rapidly. The cover crop ability has reduced vegetative growth more than yield. What has been reduced in some vegetative cover crop has been the consumption of water, and increasing the leaf water potential and foliar and photosynthesis during growth activity. Moreover, the increased in photosynthesis activity could not “Compensate” higher leaf growth of treatment of bare soil, where these treatments had resulted in the greatest amount of dry material. The use of cover crops has reduced the crop mainly reducing the fruit set, because the irrigation had reduced the cover crop effect in the berry growth. The use of temporary cover crop increased berry sunlight exposure and skin anthocyanin synthesis during early rippenig, but excessively high temperature increased anthocyanin degradation during last part of ripenning. So, at the vineyard harvest period the treatments with bare soil plant had a more anthocyanin content per grape than the temporary cover crop plant treatments. These results suggest that the effects of soil handling mainly depends on the environmental condition, and their effects in hot and dry climate are so different from the effects in cold and moist climates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This data set describes different vegetation, soil and plant functional traits (PFTs) of 15 plant species in 30 sampling plots of an agricultural landscape in the Haean-myun catchment in South Korea. We divided the data set into two main tables, the first one includes the PFTs data of the 15 studied plant species, and the second one includes the soil and vegetation characteristics of the 30 sampling plots. For a total of 150 individuals, we measures the maximum plant height (cm) and leaf size (cm**2), which means the leaf surface area for the aboveground compartment of each individual. For the belowground compartment, we measured root horizontal width, which is the maximum horizontal spread of the root, rooting length, which is the maximum rooting depth, root diameter, which is the average root diameter of a the whole root, specific root length (SRL), which is the root length divided by the root dry mass, and root/shoot ratio, which is the root dry mass divided by the shoot dry mass. At each of the 30 studied plots, we estimated three different variables describing the vegetation characteristics: vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the number of observed species) and root density (estimated using a 30 cm x 30 cm metallic frame divided into nine 10 cm x 10 cm grids placed on the soil profile), as we calculated the total number of roots that appear in each of the nine grids and then we converted it into percentage based on the root count, following. Moreover, in each plot we estimated six different soil variables: Bulk density (g/cm**3), clay % (i.e. percentage of clay), silt % (i.e. percentage of silt), soil aggregate stability, using mean weight diameter (MWD), penetration resistance (kg/cm**2), using pocket penetrometer and soil shear vane strength (kPa).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pratylenchus thornei is a major pathogen of wheat in Australia. Two glasshouse experiments with four wheat cultivars that had different final populations (Pf) of P. thornei in the field were used to optimise conditions for assessing resistance. With different initial populations (Pi) ranging up to 5250 P. thornei/kg soil, Pf of P. thornei increased to 16 weeks after sowing, and then decreased at 20 weeks in some cultivar x Pi combinations. The population dynamics of P. thornei up to 16 weeks were best described by a modified exponential equation P f (t) = aP i e kt where P f (t) is the final population density at time t, P i is the initial population density, a is the proportion of P i that initiates population development, and k is the intrinsic rate of increase of the population. The cultivar GS50a had very low k values at Pi of 5250 and 1050 indicating its resistance, Suneca and Potam had high k values indicating susceptibility, whereas intolerant Gatcher had a low value at the higher Pi and a high value at the lower Pi. Nitrate fertiliser increased plant growth and Pf values of susceptible cultivars, but in unplanted soil it decreased Pf. Nematicide (aldicarb 5 mg/kg soil) killed P. thornei more effectively in planted than in unplanted soil and increased plant growth particularly in the presence of N fertiliser. In both experiments, the wheat cultivars Suneca and Potam were more susceptible than the cultivar GS50a reflecting field results. The method chosen to discriminate wheat cultivars was to assess Pf after growth for 16 weeks in soil with Pi ~1050–5250 P. thornei/kg soil and fertilised with 200 mg NO3–N/kg soil.