962 resultados para reverse transcriptase inhibitors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quinoxaline nonnucleoside RT inhibitor (NNRTI) (S)-4-isopropoxycarbonyl-6-methoxy-3-(methylthiomethyl)-3,4- dihydroquinoxaline-2(1H)-thione (HBY 097) was used to select for drug-resistant HIV-1 variants in vitro. The viruses first developed mutations affecting the NNRTI-binding pocket, and five of six strains displayed the RT G190-->E substitution, which is characteristic for HIV-1 resistance against quinoxalines. In one variant, a new mutant (G190-->Q) most likely evolved from preexisting G190-->E mutants. The negative charge introduced by the G190-->E substitution was maintained at that site of the pocket by simultaneous selection for V179-->D together with G190-->Q. After continued exposure to the drug, mutations at positions so far known to be specific for resistance against nucleoside RT inhibitors (NRTIs) (L74-->V/I and V75-->L/I) were consistently detected in all cultures. The inhibitory activities of the cellular conversion product of 2',3'-dideoxyinosine (ddI, didanosine), 2',3'-dideoxyadenosine (ddA) and of 2',3'-didehydro-3'-deoxythymidine (d4T, stavudine) against these late-passage viruses were shown to be enhanced with the L74-->V/I RT mutant virus as compared with the wild-type (wt) HIV-1MN isolate. Clonal analysis proved linkage of the codon 74 and codon 75 mutations to the NNRTI-specific mutations in all RT gene fragments. The nonnucleoside- and nucleoside-resistance mutation sites are separated by approximately 35 A. We propose that the two sites "communicate" through the template-primer which is situated in the DNA-binding cleft between these two sites. Quinoxalines cause high selective pressure on HIV-1 replication in vitro; however, the implication of these findings for the treatment of HIV-1 infection has yet to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of studies have suggested that topoisomerase I (topo I) activity may be important in human immunodeficiency virus type 1 (HIV-1) replication. Specifically it has been reported that purified virus particles have topo I activity and that inhibitors of this enzyme can inhibit virus replication in vitro. We have investigated a possible association of HIV-1 gag proteins with topo I activity. We found that whereas the gag-encoded proteins by themselves do not have activity, the nucleocapsid protein p15 can interact with and enhance the activity of cellular topo I. Furthermore it could be demonstrated that topo I markedly enhanced HIV-1 reverse transcriptase activity in vitro and that this could be inhibited by the topo I-specific inhibitor camptothecin. The findings suggest that cellular topo I plays an important role in the reverse transcription of HIV-1 RNA and that the recruitment of this enzyme may be an important step in virus replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomerase reverse transcriptase (TERT) is a key component of the telomerase complex. By lengthening telomeres in DNA strands, TERT increases senescent cell lifespan. Mice that lack TERT age much faster and exhibit age-related conditions such as osteoporosis, diabetes and neurodegeneration. Accelerated telomere shortening in both human and animal models has been documented in conditions associated with insulin resistance, including T2DM. We investigated the role of TERT, in regulating cellular glucose utilisation by using the myoblastoma cell line C2C12, as well as primary mouse and human skeletal muscle cells. Inhibition of TERT expression or activity by using siRNA (100. nM) or specific inhibitors (100. nM) reduced basal 2-deoxyglucose uptake by ~. 50%, in all cell types, without altering insulin responsiveness. In contrast, TERT over-expression increased glucose uptake by 3.25-fold. In C2C12 cells TERT protein was mostly localised intracellularly and stimulation of cells with insulin induced translocation to the plasma membrane. Furthermore, co-immunoprecipitation experiments in C2C12 cells showed that TERT was constitutively associated with glucose transporters (GLUTs) 1, 4 and 12 via an insulin insensitive interaction that also did not require intact PI3-K and mTOR pathways. Collectively, these findings identified a novel extra-nuclear function of TERT that regulates an insulin-insensitive pathway involved in glucose uptake in human and mouse skeletal muscle cells. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV-1 reverse transcriptase (RT) catalytically incorporates individual nucleotides into a viral DNA strand complementing an RNA or DNA template strand; the polymerase active site of RT adopts multiple conformational and structural states while performing this task. The states associated are dNTP binding at the N site, catalytic incorporation of a nucleotide, release of a pyrophosphate, and translocation of the primer 3′-end to the P site. Structural characterization of each of these states may help in understanding the molecular mechanisms of drug activity and resistance and in developing new RT inhibitors. Using a 38-mer DNA template-primer aptamer as the substrate mimic, we crystallized an RT/dsDNA complex that is catalytically active, yet translocation-incompetent in crystals. The ability of RT to perform dNTP binding and incorporation in crystals permitted obtaining a series of structures: (I) RT/DNA (P-site), (II) RT/DNA/AZTTP ternary, (III) RT/AZT-terminated DNA (N-site), and (IV) RT/AZT-terminated DNA (N-site)/foscarnet complexes. The stable N-site complex permitted the binding of foscarnet as a pyrophosphate mimic. The Mg2+ ions dissociated after catalytic addition of AZTMP in the pretranslocated structure III, whereas ions A and B had re-entered the active site to bind foscarnet in structure IV. The binding of foscarnet involves chelation with the Mg2+ (B) ion and interactions with K65 and R72. The analysis of interactions of foscarnet and the recently discovered nucleotide-competing RT inhibitor (NcRTI) α-T-CNP in two different conformational states of the enzyme provides insights for developing new classes of polymerase active site RT inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cupric and ferric complexes of isonicotinic acid hydrazide (INH) inhibit the DNA synthesis catalysed by avian myeloblastosis virus (AMV) reverse transcriptase. The inhibition was to the extent of 95% by 50 μM of cupric-INH complex and 55% by 100 μM of ferric-INH complex. These complexes have been found to bind preferentially to the enzyme than to the template-primer. Kinetic analysis showed that the cupric-INH complex is a non-competitive inhibitor with respect to dTTP. The time course of inhibition has revealed that the complexes are inhibitory even after the initiation of polynucleotide synthesis. In vivo toxicity studies in 1-day-old chicks have shown that the complexes are not toxic up to a concentration of 500 μg per chick. Infection of the 1-day-old chicks with AMV pretreated with 150 μg of either of the complexes prevented symptoms of leukemia due to virus inactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arrest of proliferation is one of the prerequisites for differentiation of cytotrophoblasts into syncytiotrophoblasts, and thus during differentiation telomerase activity, as well as human telomerase reverse transcriptase (hTERT) expression, is down-regulated. Considering this, it is of interest to investigate whether syncytium formation can be delayed by prolonging the expression of telomerase in cytotrophoblasts. BeWo cells were transfected with pLPC-hTERT retroviral vector and the reverse transcription-polymerase chain reaction analysis for hTERT mRNA concentrations in the transfected cells revealed a several-fold increase in hTERT mRNA compared with the cells transfected with empty vector, and this confirmed that the transfection was successful. An increase in the proliferation, as assessed by bromodeoxyuridine incorporation assay, as well as an increase in mRNA and protein concentration of various cyclins and proliferating cell nuclear antigen, was noticed. The effect of hTERT transfection was also assessed after the addition of forskolin to induce differentiation and it was observed that cell–cell fusion was delayed and differentiation did not occur in hTERT-transfected cells. However, the effects seen were only transient as stable transfection was not possible and the cells were undergoing apoptosis after 72 h, which suggested that apart from hTERT other factors might be important for immortalization of BeWo cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semi-automated, immunomagneticcapture-reverse transcription PCR(IMC-RT-PCR) assay for the detection of three pineapple-infecting ampeloviruses, Pineapple mealybug wilt-associated virus-1, -2 and -3, is described. The assay was equivalent in sensitivity but more rapid than conventional immunocapture RT-PCR. The assay can be used either as a one- or two-step RT-PCR and allows detection of the viruses separately or together in a triplex assay from fresh, frozen or freeze-dried pineapple leaf tissue. This IMC-RT-PCR assay could be used for high throughput screening of pineapple planting propagules and could easily be modified for the detection of other RNA viruses in a range of plant species, provided suitable antibodies are available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cupric complex of isonicotinic acid hydrazide inhibits DNA synthesis by avian myloblastosis virus reverse transcriptase. This inhibition occurs in the presence of either ribonucleotide or deoxyribonucleotide templates. The inhibition of reverse transcriptase by cupric-INH complex is considerably reduced when stored or proteolytically cleaved enzyme was used in the reaction. The complex also inhibits the reverse transciptase-associated RNase H activity. The cupric-isonicotinic acid hydrazide complex cleaves pBR 322 from I DNA into smaller molecules in the presence or absence of reverse transcriptase-associated endonuclease. However, in the presence of the enzyme the DNA is cleaved to a greater extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isonicotinic acid hydrazide (isoniazid), one of the most potent antitubercular drugs, was recently shown, in our laboratory, to form two different complexes with copper, depending upon the oxidation state of the metal ion. Both the complexes have been shown to possess antiviral activity against Rous sarcoma virus, an RNA tumor virus. The antiviral activity of the complexes has been attributed to their ability to inhibit the endogenous reverse transcriptase activity of RSV. More recent studies in our laboratory indicate that both these complexes inhibit both endogenous and exogenous reactions. As low a final concentration as 50 μM of the cupric and the cuprous complexes inhibits the endogenous reaction to the extent of 93 and 75 per cent respectively. Inhibition of the exogenous reaction varies with the templates. The inhibition can be reversed by either β-mercaptoethanol or ethylene-diamine-tetra-acetic acid. The specificity of this inhibition has been ascertained by using a synthetic primer-template, −(dG)not, vert, similar15−(rCm)n, which is highly specific for reverse transcriptases. The inhibition is found to be template specific. The studies carried out, using various synthetic primer-templates, show the inhibition of both the steps of reverse transcription by the copper complexes of isoniazid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of N-acetyl-o-aryl-1,2-didehydroethylamines were synthesized by direct reduction-acetylation of beta-aryl-nitroolefins and assayed as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the first time. Compound 7a exhibited a TI v

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TMC 120 (Dapivirine) is a potent non-nucleoside reverse transcriptase inhibitor that is presently being developed as a vaginal HIV microbicide. To date, most vaginal microbicides under clinical investigation have been formulated as single-dose semi-solid gels, designed for application to the vagina before each act of intercourse. However, a clear rationale exists for providing long-term, controlled release of vaginal microbicides in order to afford continuous protection against heterosexually transmitted HIV infection and to improve user compliance. In this study we report on the incorporation of various pharmaceutical excipients into TMC 120 silicone, reservoir-type intravaginal rings (IVRs) in order to modify the controlled release characteristics of the microbicide. The results demonstrate that TMC 120 is released in zero-order fashion from the rings over a 28-day period and that release parameters could be modified by the inclusion of release-modifying excipients in the IVR. The hydrophobic liquid excipient isopropyl myristate had little effect on steady-state daily release rates, but did increase the magnitude and duration of burst release in proportion to excipient loading in the IVR. By comparison, the hydrophobic liquid poly(dimethylsiloxane) had little effect on TMC 120 release parameters. A hydrophilic excipient, lactose, had the surprising effect of decreasing TMC 120 burst release while increasing the apparent steady-state daily release in a concentration-dependent manner. Based on previous cell culture data and vaginal physiology, TMC120 is released from the various ring formulations in amounts potentially capable of maintaining a protective vaginal concentration. It is further predicted that the observed release rates may be maintained for at least a period of 1 year from a single ring device. TMC 120 release profiles and the mechanical properties of rings could be modified by the physicochemical nature of hydrophobic and hydrophilic excipients incorporated into the IVRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scientists have been debating for decades the origin of life on earth. A number of hypotheses were proposed as to what emerged first RNA or DNA; with most scientists are in favour of the "RNA World" hypothesis. Assuming RNA emerged first, it fellow that the RNA polymerases would've appeared before DNA polymerases. Using recombinant DNA technology and bioinformatics we undertook this study to explore the relationship between RNA polymerases, reverse transcriptase and DNA polymerases. The working hypothesis is that DNA polymerases evolved from reverse transcriptase and the latter evolved from RNA polymerases. If this hypothesis is correct then one would expect to find various ancient DNA polymerases with varying level of reverse transcriptase activity. In the first phase of this research project multiple sequence alignments were made on the protein sequence of 32 prokaryotic DNA-directed DNA polymerases originating from 11 prokaryotic families against 3 viral reverse transcriptase. The data from such alignments was not very conclusive. DNA polymerases with higher level of reverse transcriptase activity were non-confined to ancient organisms, as one would've expected. The second phase of this project was focused on conditions that may alter the DNA polymerase activity. Various reaction conditions, such as temperature, using various ions (Ni2+, Mn2+, Mg2+) were tested. Interestingly, it was found that the DNA polymerase from the Thermos aquatics family can be made to copy RNA into DNA (i.e. reverse transcriptase activity). Thus it was shown that under appropriate conditions (ions and reactions temperatures) reverse transcriptase activity can be induced in DNA polymerase. In the third phase of this study recombinant DNA technology was used to generate a chimeric DNA polymerase; in attempts to identify the region(s) of the polymerase responsible for RNA-directed DNA polymerase activity. The two DNA polymerases employed were the Thermus aquatic us and Thermus thermophiles. As in the second phase various reaction conditions were investigated. Data indicated that the newly engineered chimeric DNA polymerase can be induced to copy RNA into DNA. Thus the intrinsic reverse transcriptase activity found in ancient DNA polymerases was localized into a domain and can be induced via appropriate reaction conditions.