988 resultados para resolución de problemas
Resumo:
Esta investigación presenta la puesta en práctica de una propuesta pedagógica para apoyar la enseñanza del Cálculo mediante la resolución de problemas a nivel preuniversitarioen Costa Rica. El proyecto tiene su origen en las dificultades que presentan los estudiantes en la comprensión de conceptos básicos de Cálculo, específicamente el de límite y derivada. Esta experiencia se fundamentó en la elaboración de una “situación problema” que provocó un conflicto intelectual en los estudiantes, mientras que el docente fungió como mediador y aprovechó los descubrimientos hechos por los estudiantes para fundamentar teóricamente los diferentes conceptos luego de la aplicación de la propuesta. Los resultados obtenidos son muy positivos y justifican la necesidad de un cambio en las estrategias metodologías utilizadas para enseñar el Cálculo. Sin embargo, es necesario un acercamiento de los docentes hacia la Teoría de Resolución de problemas para aplicar con éxito este tipo de actividades.
Resumo:
En este trabajo se pretende evidenciar, mediante experiencias de aula, que la estrategia metodológica de Resolución de Problemas planteadas por Pólya (1965), Shoenfeld (1985) y Brousseau (1986), desarrolla competencias básicas, genéricas y específicas. Los resultados muestran que las actividades de resolución de problemas planteadas promovieron la comprensión lectora, el trabajo en equipo, la capacidad de razonamiento y argumentación frente a sus compañeros/as, la capacidad lógica de reconocimiento, el descubrimiento de patrones, exploración de problemas similares, reformulación de problemas, trabajo hacia atrás, la participación activa de los estudiantes y el desarrollo de líderes (Espinoza, et al., 2008)
Resumo:
En el presente taller se pretende mostrar una manera de hacerle seguimiento a las huellas de los procesos de regulación metacognitiva que emplean los individuos a la hora de resolver problemas matemáticos, y analizar cómo tales procesos metacognitivos favorecen tanto aspectos actitudinales como de aprendizaje en las matemáticas. Tomado de la tesis de maestría que lleva el mismo nombre (Buitrago, 2011).
Resumo:
Adoptaremos aquí el enfoque de resolución de problemas en la perspectiva de Charnay, este autor plantea unos momentos en el desarrollo de la situación problemática por parte del estudiante, denominados Formulación, Argumentación, Validación e Institucionalización del conocimiento matemático. En nuestra interpretación esto implica que, el profesor pone en juego distintos tipos de conocimientos vinculados a la cognición matemática, la planeación y diseño de actividades, la gestión en el aula y la evaluación por competencias de manera que en la transposición didáctica se genere el contrato entre él y el alumno y las respectivas devoluciones. Asumiremos entonces que en un primer momento el profesor se coloca en el papel de resolutor (hace cognición para comprender el problema, para formular conjeturas, dice que sabe sobre los objetos matemáticos involucrados en la situación problemática), luego investiga (procura salirse del problema para buscar argumentos y razones matemáticas que sustenten las conjeturas iniciales de sus alumnos) y por ultimo diseña e implementa la situación problemática (planea, diseña, gestiona y evalúa).
Resumo:
En esta comunicación se presenta un resumen del trabajo de grado desarrollado por un grupo de profesores, del cual hizo parte el autor (1999), adscritos al programa de Especialización en Educación Matemática desarrollado por la Universidad Distrital Francisco José de Caldas, en convenio con la Universidad de Sucre (Sincelejo).
Resumo:
En este trabajo recogemos un breve resumen de la tesis doctoral "aspectos epistemológicos y cognitivos de la resolución de problemas de matemáticas bien y mal definidos. Un estudio con alumnos del primer Ciclo de la Eso Y maestros en formación" que, bajo la dirección de los Doctores D. Martín M. Socas Robayna y la Doctora Josefa Hernández Domínguez, ha sido realizada, por M. Aurelia Noda Herrera, e el área de didáctica de las matemáticas del departamento de análisis matemático.
Resumo:
Reconociendo la importancia que tienen los algoritmos en el proceso de resolución de problemas, particularmente en la geometría, se identificaron algunas formas en las que se usan algoritmos que son conocidos para los resolutores, durante la resolución de algún problema. A tales formas se les ha dado el nombre de uso de algoritmos y, específicamente, se describen y se muestran evidencias de los usos relacionados con la obtención de nueva información que permita ampliar los caminos considerados para la solución del problema.
Resumo:
Ernest (1989) afirmó que las creencias y concepciones de un profesor regulan su práctica de enseñanza en el aula. De esta manera, si se desean cambios en las prácticas de los profesores de matemáticas, al parecer, deben cambiar sus creencias y concepciones. Al respecto se generó la pregunta: ¿es posible cambiar las creencias y concepciones de los profesores? (Thompson, 1991). Las investigaciones de Senger (1999), D’Amore y Fandiño (2004) y Pehkonen (2006), entre otras, han arrojado resultados positivos acerca de que las creencias y concepciones de los profesores pueden cambiar. En este artículo se presentarán los resultados de una investigación cuyo objetivo primordial fue identificar y caracterizar cambios en las concepciones de los estudiantes para profesor de sexto semestre de Licenciatura en Educación Básica con Énfasis en Matemáticas (Bogotá, Colombia). En esencia se presentarán resultados que muestran las concepciones iniciales de los estudiantes y su cambio al finalizar la intervención.
Resumo:
El artículo analiza las estrategias desarrolladas por estudiantes de nivel medio superior al resolver problemas matemáticos de la prueba PISA. El estudio toma como base las explicaciones escritas, verbales y gestuales presentadas por los estudiantes en el proceso de resolución de los problemas. Fueron caracterizadas dos tipos de estrategias: formales e informales. Las primeras, a partir de conceptos sobre objetos, relaciones y operaciones, así como de proposiciones y propiedades matemáticas y las segundas, por medio de transformaciones como la descomposición y recomposición de formas geométricas, asimismo, del uso de la estimación visual y estimación de medidas.
Resumo:
El propósito de esta comunicación es el de analizar los lineamientos contenidos en los programas de estudio de matemática del tercer ciclo y de la educación diversificada del Ministerio de Educación Pública de Costa Rica, relacionados con la resolución de problemas.
Resumo:
La presente investigación, de orden cualitativo y en curso, es parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura del “Isomorfismo de Medidas” propuesta por Vergnaud (1995). La propuesta teórica se basa en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico; en la segunda fase se diseñara y aplicará el modelo de enseñanza centrando el interés en la resolución de problemas con isomorfismo de medidas. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vi
Resumo:
La presente investigación, de orden cualitativo y en curso, forma parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura propuesta por Vergnaud (1995) en el “Isomorfismo de Medidas”. La propuesta teórica es basada en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, de dos, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vida cotidiana planteados en el aula.
Resumo:
El propósito de este curso es el de compartir algunas reflexiones relacionadas con la estrategia metodológica de resolución de problemas matemáticos, revisar las ideas de Polya (1990), Schoenfeld (1985), del informe PISA, de la NCTM y especialmente el enfoque “Open Ended” (Becker y Shimada, 2005) utilizado por los japoneses en el aula. También se describen aspectos históricos de la utilización de tecnologías digitales en el proceso de resolución de problemas, principalmente las estrategias utilizadas por investigadores en inteligencia artificial.
Resumo:
En esta comunicación se analizan dificultades y recursos que tienen los estudiantes para profesores de Educación Primaria y Secundaria al resolver problemas de Matemáticas, que se proponen como tareas y actividades básicas en un plan de formación inicial de Profesores de Matemáticas en la Educación Obligatoria, que facilitan el desarrollo de competencias profesionales útiles
Resumo:
Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.