999 resultados para reservoir effect


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A sedimentological and palynological study of three sediment cores from the northern Mekong River Delta shows the regional sedimentary and environmental development since the mid-Holocene sea level highstand. A sub- to intertidal flat deposit of mid-Holocene age is recorded in the northernmost core. Shoreline deposits in all three cores show descending ages from N to S documenting 1) the early stages of the late Holocene regression and 2) the subsequent delta progradation. The delta plain successions vary from floodplain deposits with swamp-like elements to natural levee sediments. The uppermost sediments in all cores show human disturbance to varying degrees. The most intense alteration is recorded in the northernmost core where the palynological signal together with a charcoal peak indicates the profound change of the environment during the modern land reclamation. The sediments from at least one of the three presented cores do not show a "true" delta facies succession, but rather estuary-like features, as also observed in records from southern Cambodia. This absence is probably due to lack of accommodation space during the initial phase of rapid delta progradation which impeded the development of "true" delta successions as shown in cores from the southern Mekong River Delta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Records of planktonic foraminiferal shell weights for Globigerina bulloides, covering Termination I from four proximal sites at waters depths from 1150 to 4045 m in the northeast Atlantic, demonstrate the influence of dissolution superimposed upon initial shell weight variability. Records of shell weight, unaffected by dissolution, may be used as a reference for interpreting deeper records in terms of preservation history. Combining records of planktonic shell weight (and benthic d13C) from shallow and deep sites suggests that maximum oceanic stratification and incursion of southern sourced deep waters in the North Atlantic occurred at about 18-20 ka, defining the glacial mode of Atlantic circulation. Reduced stratification and enhanced preservation in deeper waters reflect conditions during Heinrich event 1. A state similar to the modern mode of Atlantic circulation was attained by about 10 ka.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiocarbon dating was carried out on the total organic carbon of 19 lacustrine and marine sediment samples from the Bunger Hills. The results indicate that radiocarbon contamination is negligible throughout two sediment sequences from a fresh water lake. In contrast, two sequences from marine basins are irregularly influenced by the Antarctic Marine Reservoir Effect, which today amounts to more than 1000 years, depending on the degree of dilution with meltwater. All sediments were deposited during Holocene time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the siliclastic and organic carbon fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 Cal. kyrs. BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge due to the final stage of mountain deglaciation of the Putoran Massif. Increased supply of Yenisei-derived material indicated by peak magnetic susceptibility values probably occurred in climate-related pulses culminating near 11, 10, and 9 Cal. kyrs. BP. As sea level rose, the main Holocene depocenter migrated southward. Based on hydrogen index values and n-alkanes, the organic matter is predominantly of terrigenous origin. Maximum accumulation rates of 1.5 to more than 6 g/cm**2/y occurred in the early Holocene sediments, suggesting more humid climatic conditions with an increased vegetation cover in the source area at that time. In general, high organic carbon accumulation rates characterize the estuaries and the inner Kara Sea as important sink for terrigenous organic carbon. A high-resolution record of Holocene variability of magnetic susceptibility (MS) in an AMS14C-dated sediment core from the northern Yenisei estuary may indicate natural variability of Arctic climate change and river discharge on a centennial to millenial time scale. Short-term maxima in MS probably related to warmer climate, enhanced precipitation, intensified weathering/erosion and increased river discharge, display a frequency of about 300 to 700 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The glacial-to-Holocene evolution of subarctic Pacific surface water stratification and silicic acid (Si) dynamics is investigated based on new combined diatom oxygen (d18Odiat) and silicon (d30Sidiat) isotope records, along with new biogenic opal, subsurface foraminiferal d18O, alkenone-based sea surface temperature, sea ice, diatom, and core logging data from the NE Pacific. Our results suggest that d18Odiat values are primarily influenced by changes in freshwater discharge from the Cordilleran Ice Sheet (CIS), while corresponding d30Sidiat are primarily influenced by changes in Si supply to surface waters. Our data indicate enhanced glacial to mid Heinrich Stadial 1 (HS1) NE Pacific surface water stratification, generally limiting the Si supply to surface waters. However, we suggest that an increase in Si supply during early HS1, when surface waters were still stratified, is linked to increased North Pacific Intermediate Water formation. The coincidence between fresh surface waters during HS1 and enhanced ice-rafted debris sedimentation in the North Atlantic indicates a close link between CIS and Laurentide Ice Sheet dynamics and a dominant atmospheric control on CIS deglaciation. The Bølling/Allerød (B/A) is characterized by destratification in the subarctic Pacific and an increased supply of saline, Si-rich waters to surface waters. This change toward increased convection occurred prior to the Bølling warming and is likely triggered by a switch to sea ice-free conditions during late HS1. Our results furthermore indicate a decreased efficiency of the biological pump during late HS1 and the B/A (possibly also the Younger Dryas), suggesting that the subarctic Pacific has then been a source region of atmospheric CO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, understanding of ice sheet retreat within Pine Island Bay (PIB) following the Last Glacial Maximum (LGM) was based on seven radiocarbon dates and only fragmentary seafloor geomorphic evidence. During the austral summer 2009-2010, restricted sea ice cover allowed for the collection of 27 sediment cores from the outer PIB trough region. Combining these cores with data from prior cruises, over 133 cores have been used to conduct a detailed sedimentological facies analysis. These results, augmented by 23 new radiocarbon dates, are used to reconstruct the post-LGM deglacial history of PIB. Our results record a clear retreat stratigraphy in PIB composed of, from top to base; terrigenous sandy silt (distal glacimarine), pebbly sandy mud (ice-proximal glacimarine), and till. Initial retreat from the outer-continental shelf began shortly after the LGM and before 16.4 k cal yr BP, as a likely response to rising sea level. Bedforms in outer PIB document episodic retreat in the form of back-stepping grounding zone wedges and are associated with proximal glacimarine sediments. A sub-ice shelf facies is observed in central PIB and spans ~12.3-10.6 k cal yr BP. It is possible that widespread impingement of warm water onto the continental shelf caused an abrupt and widespread change from sub-ice shelf sedimentation to distal glacimarine sedimentation dominated by widespread dispersal of terrigenous silt between 7.8 and 7.0 k cal yr BP. The final phase of retreat ended before ~1.3 k cal yr BP, when the grounding line migrated to a location near the current ice margin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mid-Holocene climate optimum is inferred from a palaeosalinity reconstruction of a closed saline lake (Beall Lake) from the Windmill Islands, East Antarctica using an expanded diatom salinity weighted averaging (WA) regression and calibration model. The addition of 14 lakes and ponds from the Windmill Islands, East Antarctica, to an existing weighted averaging regression and calibration palaeosalinity model of 33 lakes from the Vestfold Hills, East Antarctica expands the number of taxa and lakes and the range of salinity in the existing model and improves the model's predictive ability. This improved model was used to infer Holocene changes in lake water salinity in Beall Lake, Windmill Islands. Six changes in diatom-inferred salinity in Beall Lake are put into broad chronological context based on three radiocarbon dates: as the East Antarctic Ice Sheet (EAIS) retreated from the Windmill Islands during the early Holocene (~9000-8130 corr. yr BP), Beall Lake formed as a melt water-fed freshwater lake, which gradually became more saline as marine influence increased from ~8000 corr. yr BP. Between ~8000 and 4800 corr. yr BP, the diatom assemblage included planktonic marine taxa such as Chaetoceros spp. and cryophilic taxa such as Fragilariopsis cylindrus, which indicate favourable summer growth conditions. A mid-Holocene warm period produced a climate that was warmer and more humid with increased precipitation and snow accumulation. This is reflected in the Beall Lake core as a reduction in the salinity of the lake diatom assemblage from ~4800-4600 corr. yr BP. Holocene isostatic uplift rates in the Windmill Islands vary from 5-6 m/1000 yr. By applying this uplift rate, it is calculated that the bedrock would have risen above sea level by ~4000 yr BP. The Beall Lake core diatom assemblage from ~4600-2900 corr. yr BP includes both marine cryophilic and planktonic taxa together with freshwater benthic and planktonic lacustrine taxa. This mix of species indicates the emergence of the lake from the sea around ~4600 corr. yr BP. From ~2800 corr. yr BP, retreat of the ice margin led to increasing melt water inputs and associated freshening of the lake basin until ~1900 corr. yr BP. The lake basin had no oceanic influence by this time, allowing a terrestrial freshwater flora to establish and thrive for the next ~1000 yr. At ~1850 corr. yr BP, a sudden and rapid salinity change is evident in Beall Lake. A late Holocene warm period between 2000 and 1000 yr BP has been observed in ice core records from Law Dome (an ice cap abutting the Windmill Islands to the east and north). It is therefore inferred that, at ~1850 corr. yr BP, summer temperatures within the Beall Lake catchment area were much higher than present summer temperatures. The climate optimum identified in the Beall Lake core ~4800 yr BP confirms mid-Holocene warming of the Windmill Islands and suggests a synchronous mid-Holocene climate optimum occurred across coastal East Antarctica. In addition, the abrupt climate change inferred at ~1850 yr BP suggests that higher resolution sampling of sediment cores from coastal East Antarctic limnological oases will provide more evidence of rapid climate change events over coastal East Antarctica in future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Determining the response of sites within the Arctic Circle to long-term climatic change remains an essential pre-requisite for assessing the susceptibility of these regions to future global warming and Arctic amplification. To date, existing records from North East Russia have demonstrated significant spatial variability across the region during the late Quaternary. Here we present diatom d18O and d30Si data from Lake El'gygytgyn, Russia, and suggest environmental changes that would have impacted across West Beringia from the Last Glacial Maximum to the modern day. In combination with other records, the results raise the potential for climatic teleconnections to exist between the region and sites in the North Atlantic. The presence of a series of 2-3 per mil decreases in d18Odiatom during both the Last Glacial and the Holocene indicates the sensitivity of the region to perturbations in the global climate system. Evidence of an unusually long Holocene thermal maximum from 11.4 ka BP to 7.6 ka BP is followed by a cooling trend through the remainder of the Holocene in response to changes in solar insolation. This is culminated over the last 900 years by a significant decrease in d18Odiatom of 2.3 per mil, which may be related to a strengthening and easterly shift of the Aleutian Low in addition to possible changes in precipitation seasonality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[1] Planktonic d18O and Mg/Ca-derived sea surface temperature (SST) records from the Agulhas Corridor off South Africa display a progressive increase of SST during glacial periods of the last three climatic cycles. The SST increases of up to 4°C coincide with increased abundance of subtropical planktonic foraminiferal marker species which indicates a progressive warming due to an increased influence of subtropical waters at the core sites. Mg/Ca-derived SST maximizes during glacial maxima and glacial Terminations to values about 2.5°C above full-interglacial SST. The paired planktonic d18O and Mg/Ca-derived SST records yield glacial seawater d18O anomalies of up to 0.8 per mill, indicating measurably higher surface salinities during these periods. The SST pattern along our record is markedly different from a UK'37-derived SST record at a nearby core location in the Agulhas Corridor that displays SST maxima only during glacial Terminations. Possible explanations are lateral alkenone advection by the vigorous regional ocean currents or the development of SST contrasts during glacials in association with seasonal changes of Agulhas water transports and lateral shifts of the Agulhas retroflection. The different SST reconstructions derived from UK'37 and Mg/Ca pose a significant challenge to the interpretation of the proxy records and demonstrate that the reconstruction of the Agulhas Current and interocean salt leakage is not as straightforward as previously suggested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three radiocarbon-dated sediment cores from the northeastern Vietnamese Mekong River Delta have been analysed with a multiproxy approach (grain size, pollen and spores, macro-charcoal, carbon content) to unravel the palaeoenvironmental history of the region since the mid Holocene. During the mid-Holocene sea-level highstand a diverse, zoned and widespread mangrove belt (dominated by Rhizophora) covered the extended tidal flats. The subsequent regression and coeval delta progradation led to the rapid development of a back-mangrove community dominated by Ceriops and Bruguiera but also represented locally by e.g. Kandelia, Excoecaria and Phoenix. Along rivers this community seems to have endured even when the adjoining floodplain had already shifted to freshwater vegetation. Generally this freshwater vegetation has a strong swamp signature but locally Arecaceae, Fabaceae, Moraceae/Urticaceae and Myrsinaceae are important and mirror the geomorphological diversity of the delta plain. The macro-charcoal record implies that natural burning of vegetation occurred throughout the records, however, the occurrence of the highest amounts of macro-charcoal particles is linked with modern human activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Southern Ocean plays a prominent role in the Earth's climate and carbon cycle. Changes in the Southern Ocean circulation may have regulated the release of CO2 to the atmosphere from a deep-ocean reservoir during the last deglaciation. However, the path and exact timing of this deglacial CO2 release are still under debate. Here we present measurements of deglacial surface reservoir 14C age changes in the eastern Pacific sector of the Southern Ocean, obtained by 14C dating of tephra deposited over the marine and terrestrial regions. These results, along with records of foraminifera benthic-planktic 14C age and d13C difference, provide evidence for three periods of enhanced upwelling in the Southern Ocean during the last deglaciation, supporting the hypothesis that Southern Ocean upwelling contributed to the deglacial rise in atmospheric CO2. These independently dated marine records suggest synchronous changes in the Southern Ocean circulation and Antarctic climate during the last deglaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is limited knowledge pertaining to the history of the Greenland Ice Sheet (GIS) during the last glacial-interglacial transition as it retreated from the continental margins to an inland position. Here we use multiproxy data, including ice-rafted debris (IRD); planktonic isotopes; alkenone temperatures; and tephra geochemistry from the northern Labrador Sea, off southwest Greenland, to investigate the deglacial response of the GIS and evaluate its implications for the North Atlantic deglacial development. The results imply that the southern GIS retreated in three successive stages: (1) early deglaciation of the East Greenland margins, by tephra-rich IRD that embrace Heinrich Event 1; (2) progressive retreat during Allerød culminating in major meltwater releases (d18O depletion of 1.2 per mil) at the Allerød-Younger Dryas transition (12.8-13.0 kyr B.P.); and (3) a final stage of glacial recession during the early Holocene (~9-11 kyr B.P.). Rather than indicating local temperatures of ambient surface water, the alkenones likely were transported to the core site by the Irminger Current. We attribute the timing of GIS retreat to the incursion of warm intermediate waters along the base of grounded glaciers and below floating ice shelves on the continental margin. The results lend support to the view that GIS meltwater presented a forcing factor for the Younger Dryas cooling.