174 resultados para refugia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Guiana Shield (GS) is one of the most pristine regions of Amazonia and biologically one of the richest areas on Earth. How and when this massive diversity arose remains the subject of considerable debate. The prevailing hypothesis of Quaternary glacial refugia suggests that a part of the eastern GS, among other areas in Amazonia, served as stable forested refugia during periods of aridity. However, the recently proposed disturbance-vicariance hypothesis proposes that fluctuations in temperature on orbital timescales, with some associated aridity, have driven Neotropical diversification. The expectations of the temporal and spatial organization of biodiversity differ between these two hypotheses. Here, we compare the genetic structure of 12 leaf-litter inhabiting frog species from the GS lowlands using a combination of mitochondrial and nuclear sequences in an integrative analytical approach that includes phylogenetic reconstructions, molecular dating, and Geographic Information System methods. This comparative and integrated approach overcomes the well-known limitations of phylogeographic inference based on single species and single loci. All of the focal species exhibit distinct phylogeographic patterns highlighting taxon-specific historical distributions, ecological tolerances to climatic disturbance, and dispersal abilities. Nevertheless, all but one species exhibit a history of fragmentation/isolation within the eastern GS during the Quaternary with spatial and temporal concordance among species. The signature of isolation in northern French Guiana (FG) during the early Pleistocene is particularly clear. Approximate Bayesian Computation supports the synchrony of the divergence between northern FG and other GS lineages. Substructure observed throughout the GS suggests further Quaternary fragmentation and a role for rivers. Our findings support fragmentation of moist tropical forest in the eastern GS during this period when the refuge hypothesis would have the region serving as a contiguous wet-forest refuge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Pleistocene glacial cycles in forming the contemporary genetic structure of organisms has been well studied in China with a particular focus on the Tibetan Plateau. However, China has a complex topography and diversity of local climates, and how glacial cycles may have shaped the subtropical and tropical biota of the region remains mostly unaddressed. To investigate the factors that affected the phylogeography and population history of a widely distributed and nondeciduous forest species, we analysed morphological characters, mitochondrial DNA sequences and nuclear microsatellite loci in the Silver Pheasant (Lophura nycthemera). In a pattern generally consistent with phenotypic clusters, but not nominal subspecies, deeply divergent mitochondrial lineages restricted to different geographic regions were detected. Coalescent simulations indicated that the time of main divergence events corresponded to major glacial periods in the Pleistocene and gene flow was only partially lowered by drainage barriers between some populations. Intraspecific cytonuclear discordance was revealed in mitochondrial lineages from Hainan Island and the Sichuan Basin with evidence of nuclear gene flow from neighbouring populations into the latter. Unexpectedly, hybridization was revealed in Yingjiang between the Silver Pheasant and Kalij Pheasant (Lophura leucomelanos) with wide genetic introgression at both the mtDNA and nuclear levels. Our results highlight a novel phylogeographic pattern in a subtropical area generated from the combined effects of climate oscillation, partial drainage barriers and interspecific hybridization. Cytonuclear discordance combined with morphological differentiation implies that complex historical factors shaped the divergence process in this biodiversity hot spot area of southern China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial–interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia – fossil records, species distribution models and phylogeographic surveys – in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparison of mitochondrial and morphological divergence in eight populations of a widespread leaf-litter skink is used to determine the relative importance of geographic isolation and natural selection in generating phenotypic diversity in the Wet Tropics Rainforest region of Australia. The populations occur in two geographically isolated regions, and within each region, in two different habitats (closed rainforest and tall open forest) that span a well characterized ecological gradient. Morphological differences among ancient geographic isolates (separated for several million years, judging by their mitochondrial DNA sequence divergence) were slight, but morphological and life history differences among habitats were large and occurred despite moderate to high levels of mitochondrial gene flow. A field experiment identified avian predation as one potential agent of natural selection. These results indicate that natural selection operating across ecological gradients can be more important than geographic isolation in similar habitats in generating phenotypic diversity. In addition, our results indicate that selection is sufficiently strong to overcome the homogenizing effects of gene flow, a necessary first step toward speciation in continuously distributed populations. Because ecological gradients may be a source of evolutionary novelty, and perhaps new species, their conservation warrants greater attention. This is particularly true in tropical regions, where most reserves do not include ecological gradients and transitional habitats.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge about the glacial refugia of the thermophilous European Castanea sativa Mill. (sweet chestnut) is still inadequate. Its original range of distribution has been masked by strong human impact. Moreover, under natural conditions the species was probably admixed with other taxa (such as Quercus, Fraxinus, Fagus, Tilia) and thus possibly represented by low percentages in pollen records. In this paper we try to overcome the difficulties related to the scarcity and irregularity of chestnut pollen records by considering 1471 sites and extending the palynological approach to develop a Castanea refugium probability index (IRP), aimed at detecting possible chestnut refugia where chestnuts survived during the last glaciation. The results are in close agreement with the current literature on the refugia of other thermophilous European trees. The few divergences are most probably due to the large amount of new data integrated in this study, rather than to fundamental disagreements about data and data interpretation. The main chestnut refugia are located in the Transcaucasian region, north-western Anatolia, the hinterland of the Tyrrhenian coast from Liguria to Lazio along the Apennine range, the region around Lago di Monticchio (Monte Vulture) in southern Italy, and the Cantabrian coast on the Iberian peninsula. Despite the high likelihood of Castanea refugia in the Balkan Peninsula and north-eastern Italy (Colli Euganei, Monti Berici, Emilia-Romagna) as suggested by the IRP, additional palaeobotanical investigations are needed to assess whether these regions effectively sheltered chestnut during the last glaciation. Other regions, such as the Isère Département in France, the region across north-west Portugal and Galicia, and the hilly region along the Mediterranean coast of Syria and Lebanon were classified as areas of medium refugium probability. Our results reveal an unexpected spatial richness of potential Castanea refugia. It is likely that other European trees had similar distribution ranges during the last glaciation. It is thus conceivable that shelter zones with favourable microclimates were probably more numerous and more widely dispersed across Europe than so far assumed. In the future, more attention should be paid to pollen traces of sporadic taxa thought to have disappeared from a given area during the last glacial and post-glacial period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Comparative phylogeographic analyses of alpine biota from the Northern Hemisphere have linked patterns of genetic diversification to glacial expansion and contraction events in the Pliocene and Pleistocene. Furthermore, the extent of diversification across species groups appears to be associated with vagility. In this study we test whether these patterns apply to a geologically stable system from eastern Australia with comparatively shallow elevational gradients and minimal influence from historical glacial activity. Location: The Australian Alps, Victoria, eastern Australia. Methods: We considered phylogeographic patterns across five alpine invertebrate species based on mitochondrial and nuclear DNA sequence data. Bayesian inference methods were used to estimate species phylogenies and divergence times among lineages. GIS tools were used to map interpopulation genetic divergence and intrapopulation genetic diversity estimates and to visualize spatial patterns across species, providing insights into patterns of endemism and demographic history. Results: Phylogeographic patterns and the timing of lineage diversification were consistent across taxonomic groups. Mountain summits harbour highly differentiated haplogroups, including summits connected by high-elevational plateaus, pointing to diversifications being maintained since the early to mid-Pleistocene. These findings are consistent with previous studies of alpine mammals and reptiles, demonstrating a high degree of endemism in this region, regardless of species vagility. Main conclusions: The fine spatial scales at which deep genetic differentiation among alpine communities was observed in this study are unprecedented. This suggests that glacial periods have had less of an impact on species distributions and genetic diversity than they have in alpine systems in the Northern Hemisphere. Historical gene flow among sky-island populations has been limited despite connecting snowlines during glacial periods, suggesting that factors other than snow cover have influenced patterns of gene flow in this region. These findings emphasize the unique phylogeographic history affecting Victorian alpine biodiversity, and the importance of conserving biodiversity from multiple mountain summits in this region of high endemism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the importance of thermal refugia along the majority of the geographical range of a key inter- tidal species (Patella vulgata Linnaeus, 1758) on the Atlantic coast of Europe. We asked whether differences between sun-exposed and shaded microhabitats were responsible for differences in physiological stress and ecological perfor- mance and examined the availability of refugia near equatorial range limits. Thermal differences between sun- exposed and shaded microhabitats are consistently associated with differences in physiological performance, and the frequency of occurrence of high temperatures is most probably limiting the maximum population densities sup- ported at any given place. Topographical complexity provides thermal refugia throughout most of the distribution range, although towards the equatorial edges the magnitude of the amelioration provided by shaded microhabitats is largely reduced. Importantly, the limiting effects of temperature, rather than being related to latitude, seem to be tightly associated with microsite variability, which therefore is likely to have profound effects on the way local popu- lations (and consequently species) respond to climatic changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential restriction to effective dispersal and gene flow caused by habitat fragmentation can apply to multiple levels of evolutionary scale; from the fragmentation of ancient supercontinents driving diversification and speciation on disjunct landmasses, to the isolation of proximate populations as a result of their inability to cross intervening unsuitable habitat. Investigating the role of habitat fragmentation in driving diversity within and among taxa can thus include inferences of phylogenetic relationships among taxa, assessments of intraspecific phylogeographic structure and analyses of gene flow among neighbouring populations. The proposed Gondwanan clade within the chironomid (non-biting midge) subfamily Orthocladiinae (Diptera: Chironomidae) represents a model system for investigating the role that population fragmentation and isolation has played at different evolutionary scales. A pilot study by Krosch et al (2009) indentified several highly divergent lineages restricted to ancient rainforest refugia and limited gene flow among proximate sites within a refuge for one member of this clade, Echinocladius martini Cranston. This study provided a framework for investigating the evolutionary history of this taxon and its relatives more thoroughly. Populations of E. martini were sampled in the Paluma bioregion of northeast Queensland to investigate patterns of fine-scale within- and among-stream dispersal and gene flow within a refuge more rigorously. Data was incorporated from Krosch et al (2009) and additional sites were sampled up- and downstream of the original sites. Analyses of genetic structure revealed strong natal site fidelity and high genetic structure among geographically proximate streams. Little evidence was found for regular headwater exchange among upstream sites, but there was distinct evidence for rare adult flight among sites on separate stream reaches. Overall, however, the distribution of shared haplotypes implied that both larval and adult dispersal was largely limited to the natal stream channel. Patterns of regional phylogeographic structure were examined in two related austral orthoclad taxa – Naonella forsythi Boothroyd from New Zealand and Ferringtonia patagonica Sæther and Andersen from southern South America – to provide a comparison with patterns revealed in their close relative E. martini. Both taxa inhabit tectonically active areas of the southern hemisphere that have also experienced several glaciation events throughout the Plio-Pleistocene that are thought to have affected population structure dramatically in many taxa. Four highly divergent lineages estimated to have diverged since the late Miocene were revealed in each taxon, mirroring patterns in E. martini; however, there was no evidence for local geographical endemism, implying substantial range expansion post-diversification. The differences in pattern evident among the three related taxa were suggested to have been influenced by variation in the responses of closed forest habitat to climatic fluctuations during interglacial periods across the three landmasses. Phylogeographic structure in E. martini was resolved at a continental scale by expanding upon the sampling design of Krosch et al (2009) to encompass populations in southeast Queensland, New South Wales and Victoria. Patterns of phylogeographic structure were consistent with expectations and several previously unrecognised lineages were revealed from central- and southern Australia that were geographically endemic to closed forest refugia. Estimated divergence times were congruent with the timing of Plio-Pleistocene rainforest contractions across the east coast of Australia. This suggested that dispersal and gene flow of E. martini among isolated refugia was highly restricted and that this taxon was susceptible to the impacts of habitat change. Broader phylogenetic relationships among taxa considered to be members of this Gondwanan orthoclad group were resolved in order to test expected patterns of evolutionary affinities across the austral continents. The inferred phylogeny and estimated divergence times did not accord with expected patterns based on the geological sequence of break-up of the Gondwanan supercontinent and implied instead several transoceanic dispersal events post-vicariance. Difficulties in appropriate taxonomic sampling and accurate calibration of molecular phylogenies notwithstanding, the sampling regime implemented in the current study has been the most intensive yet performed for austral members of the Orthocladiinae and unsurprisingly has revealed both novel taxa and phylogenetic relationships within and among described genera. Several novel associations between life stages are made here for both described and previously unknown taxa. Investigating evolutionary relationships within and among members of this clade of proposed Gondwanan orthoclad taxa has demonstrated that a complex interaction between historical population fragmentation and dispersal at several levels of evolutionary scale has been important in driving diversification in this group. While interruptions to migration, colonisation and gene flow driven by population fragmentation have clearly contributed to the development and maintenance of much of the diversity present in this group, long-distance dispersal has also played a role in influencing diversification of continental biotas and facilitating gene flow among disjunct populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eastern Australian rainforests have experienced several cycles of range contraction and expansion since the late Miocene that are closely correlated with global glaciation events. Together with ongoing aridification of the continent, this has resulted in current distributions of native closed forest that are highly fragmented along the east coast. Several closed forest endemic taxa exhibit patterns of population genetic structure that are congruent with historical isolation of populations in discrete refugia and reflect evolutionary histories dramatically affected by vicariance. Currently, limited data are available regarding the impact of these past climatic fluctuations on freshwater invertebrate taxa. The non-biting midge species Echinocladius martini Cranston is distributed along the east coast and inhabits predominantly montane streams in closed forest habitat. Phylogeographic structure in E. martini was resolved here at a continental scale by incorporating data from a previous pilot study and expanding the sampling design to encompass populations in the Wet Tropics of north-eastern Queensland, south-east Queensland, New South Wales and Victoria. Patterns of phylogeographic structure revealed several deeply divergent mitochondrial lineages from central and south-eastern Australia that were previously unrecognised and were geographically endemic to closed forest refugia. Estimated divergence times were congruent with late Miocene onset of rainforest contractions across the east coast of Australia. This suggested that dispersal and gene flow among E. martini populations isolated in refugia has been highly restricted historically. Moreover, these data imply, in contrast to existing preconceptions about freshwater invertebrates, that this taxon may be acutely susceptible to habitat fragmentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speciation on islands is affected by island size and the range of habitats and resources available and often also by limited interactions with other taxa. An ancestral population may evolve into a large number of species via an adaptive radiation. In Madagascar, most groups of animals and plants have radiated on the island, having arrived via oceanic dispersal during the long isolation of Madagascar. Characteristic features of Malagasy biota are exceptionally high level of endemism, high species richness as well as lack of many higher taxa that are dominant on the African mainland. Malagasy dung beetles are dominated by two tribes, Canthonini and Helictopleurina, with more than 250 endemic species. In this thesis I have reconstructed molecular phylogenies for the two tribes using several gene regions and different phylogenetic methods. Evolution of closely related species and among populations of the same species was examined with haplotype networks. The Malagasy Canthonini consists of three large lineages, while Helictopleurina forms a monophyletic group. The ancestors of each of the four clades colonised Madagascar at different times during Cenozoic. The subsequent radiations differ in terms of the number of extant species (from 37 to more than 100) and the level of ecological differentiation. In addition, Onthophagini (6 species) and Scarabaeini (3) have colonised Madagascar several times, but they have not radiated and the few species have not entered forests where Canthonini and Helictopleurina mostly occur. Among the three Canthonini radiations, speciation appears to have been mostly allopatric in the oldest and the youngest clades, while in the Epactoides clade sister species have diverged in their ecologies but have similar geographical distributions, indicating that speciation may have occurred in regional sympatry. The most likely isolating mechanisms have been rivers and forest refugia during dry and cool geological periods. Most species are generalists feeding on both carrion and dung, and competition among ecologically similar species may prevent their coexistence in the same communities. Some species have evolved to forage in the canopy and a few species have shifted to use cattle dung, a new resource in the open habitats following the introduction of cattle 1500 years ago. The latter shift has allowed species to expand their geographical ranges.