947 resultados para reduction of CO(2) emissions
Resumo:
The generation expansion planning (GEP) problem consists in determining the type of technology, size, location and time at which new generation units must be integrated to the system, over a given planning horizon, to satisfy the forecasted energy demand. Over the past few years, due to an increasing awareness of environmental issues, different approaches to solve the GEP problem have included some sort of environmental policy, typically based on emission constraints. This paper presents a linear model in a dynamic version to solve the GEP problem. The main difference between the proposed model and most of the works presented in the specialized literature is the way the environmental policy is envisaged. Such policy includes: i) the taxation of CO(2) emissions, ii) an annual Emissions Reduction Rate (ERR) in the overall system, and iii) the gradual retirement of old inefficient generation plants. The proposed model is applied in an 11-region to design the most cost-effective and sustainable 10-technology US energy portfolio for the next 20 years.
Resumo:
The aim of this investigation was to evaluate the cleaning effect of CO 2 on surface topography and composition of failed dental implant surfaces. Ten failed dental implants were retrieved from nine patients (mean age, 46.33 ± 5.81 years) as a result of early or late failure. The implants were divided into two parts: one side of the implant was irradiated with a CO 2 laser (test side), while the other side did not receive irradiation (control side). The CO 2 laser was operated at 1.2 W in a continuous wave for 40 seconds (40 J energy). The handpiece of the CO 2 laser was kept at a distance of 30 mm from the implant surface, resulting in a spot area of 0.031415 cm 2 (38.20 W/cm 2; 1559 J/cm 2) in scanning mode (cervical-apical). One unused dental implant was used as a negative control for both groups. All implant surfaces were examined by scanning electron mi croscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) for element analysis. SEM showed that the surface of the test sides consisted of different degrees of organic residues, appearing mainly as dark stains similar to those observed on the control sides. None of the test surfaces presented alterations such as crater-like alterations, lava-like layers, or melting compared with the nonirradiated surfaces. Foreign elements such as carbon, oxygen, sodium, calcium, and aluminum were detected on both sides. These results suggest that CO 2 laser irradiation does not modify the implant surface, although the cleaning effect was not satisfactory.
Resumo:
The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO 2 2+ dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340±0.010 eV. The fragmentation of energy selected CO 2 2+ ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from ∼38.7 to ∼41 eV above the ground state of neutral CO 2 has been observed in the experimental time window of ∼0.1-2.3 μs with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO ++O + formation in indirect dissociative double photoionization below the threshold for formation of CO 2 2+. The threshold for CO ++O + formation is found to be 35.56±0.10 eV or lower, which is more than 2 eV lower than previous measurements.
Resumo:
Some aromatic 1,2-dicarbonyl compounds, i.e. 9,10-phenanthrenequinone, acenaphthenequinone and benzil, and their corresponding N-phenyl monoimines, have been reduced, using dry acetonitrile as the solvent, in the presence of sodium cyanide as a reducing agent. Comparative potentiostatic preparative-scale electrolysis is described.
Resumo:
Increasing concentrations of atmospheric carbon dioxide (CO(2)) influence climate by suppressing canopy transpiration in addition to its well- known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO(2) concentrations using the National Center for Atmospheric Research's (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO(2) levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO(2) levels implies that incremental warming associated with the physiological effect of CO(2) will not abate at higher CO(2) concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO(2) emissions.
Resumo:
Consumer goods manufacturers aiming to reduce the environmental impact associated with their products commonly pursue incremental change strategies, but more radical approaches may be required if we are to address the challenges of sustainable consumption. One strategy to realize step change reductions is to prepare a portfolio of innovations providing different levels of impact reduction in exchange for different levels of organizational resource commitment. In this research a tool is developed to support this strategy, starting with the assumption that through brainstorming or other eco-innovation approaches, a long-list of candidate innovations has been created. The tool assesses the potential greenhouse gas benefit of an innovative option against the difficulty of its implementation. A simple greenhouse gas benefit assessment method based on streamlined LCA was used to analyze impact reduction potential, and a novel measure of implementation difficulty was developed. The predictions of implementation difficulty were compared against expert opinion, and showed similar results indicating the measure can be used sensibly to predict implementation difficulty. The assessment of the environmental gain versus implementation difficulty is visualized in a matrix, showing the trade-offs of several options. The tool is deliberately simple with scalar measures of CO 2 emissions benefits and implementation difficulty so tool users must remain aware of other potential environmental burdens besides greenhouse gases (e.g. water, waste). In addition, although relative life cycle emissions benefits of an option may be low, the absolute impact of an option can be high and there may be other co-benefits, which could justify higher levels of implementation difficulty. Different types of consumer products (e.g. household, personal care, foods) have been evaluated using the tool. Initial trials of the tool within Unilever demonstrate that the tool facilitates rapid evaluation of low-carbon innovations. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
While numerous studies find that deep-saline sandstone aquifers in the United States could store many decades worth of the nation's current annual CO 2 emissions, the likely cost of this storage (i.e. the cost of storage only and not capture and transport costs) has been harder to constrain. We use publicly available data of key reservoir properties to produce geo-referenced rasters of estimated storage capacity and cost for regions within 15 deep-saline sandstone aquifers in the United States. The rasters reveal the reservoir quality of these aquifers to be so variable that the cost estimates for storage span three orders of magnitude and average>$100/tonne CO 2. However, when the cost and corresponding capacity estimates in the rasters are assembled into a marginal abatement cost curve (MACC), we find that ~75% of the estimated storage capacity could be available for<$2/tonne. Furthermore, ~80% of the total estimated storage capacity in the rasters is concentrated within just two of the aquifers-the Frio Formation along the Texas Gulf Coast, and the Mt. Simon Formation in the Michigan Basin, which together make up only ~20% of the areas analyzed. While our assessment is not comprehensive, the results suggest there should be an abundance of low-cost storage for CO 2 in deep-saline aquifers, but a majority of this storage is likely to be concentrated within specific regions of a smaller number of these aquifers. © 2011 Elsevier B.V.
Resumo:
Carbon dioxide electroreduction on copper electrode was studied by surface enhanced Raman scattering (SERS) in K(2)SO(4) aqueous solutions with different pH values. CO(2) was bubbled into the solution at 0 V vs. Ag/AgCl, i.e., on an oxidized copper surface. In acidic solutions (pH around 2.5), at -0.2 V, bands indicative of the presence of ethylene on the electrode surface were detected. Although ethylene is knowledgably a product of CO(2) electroreduction on copper, it was not experimentally identified on the electrode`s surface at such a low cathodic potential in prior works. In solutions with pH around 2.5, CO bands were not observed, suggesting that hydrocarbons could be formed by a pathway that does not occur via adsorbed CO. In solutions with higher pHs, a complex spectral pattern, between 800 and 1700 cm(-1), was observed at approximately -0.4 V. The observed spectrum closely resembles those reported in the literature for adsorption of monocarboxylic acids with small chains. The spectral features indicate the presence of a structure containing a double C=C bond. a carboxyl group, and C-H bonds on the electrode`s surface. SERS spectra obtained in CO-saturated solution are also presented. However, in this case, no SERS bands were observed in the region between 800 and 1700 cm(-1) at low cathodic potentials. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Photoexcited electrochemically generated quinone radical anions reduced 1,2-dibromobenzene to bromobenzene, 1,4-dibromobenzene to bromobenzene and 4-chlorobenzonitrile to benzonitrile. In the presence of anthracene, 2-bromophenyl-, 4-bromophenyl- and 4-cyanophenyl-anthracenes were formed. With acetaldehyde, acetone, acetophenone, benzaldehyde and benzophenone, the major products were the corresponding pinacols, with small amounts of the two-electron secondary alcohols. In acetonitrile as solvent, cinnamonitriles, hydrocinnamonitriles and phenylglutaronitriles were formed in addition to the alcohols. Glyoxylic acid was reduced to tartaric, glycolic and malic acids. The reduction of CO2 was unsuccessful.
Resumo:
Decarbonizing the world`s energy matrix is the strategy being implemented by most countries to reduce CO(2) emissions and thus contribute to achieve the ultimate objectives of the Climate Convention. The evolution of the carbon intensity (I(c)=CO(2)/GDP) in the period 1990-2007 was encouraging but not sufficient to reduce the growth of carbon emission. As a result of COP-15 in Copenhagen these countries (and regions) made pledges that could lead to more reduction: for the United States a 17% reduction in CO(2) emissions by 2020 below the level of 2005: for the European Union a 20% reduction in CO(2) emissions by 2020 below the 1990 level: for China a 40-45% reduction in the carbon intensity and for India a 20-25% reduction in carbon intensity by 2020. We analyzed the consequences of such pledges and concluded that the expected yearly rate of decrease of the carbon intensity follows basically the ""business as usual"" trend in the period 1990-2007 and will, in all likelihood, be insufficient to reduce carbon emissions up to 2020. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We have used our new pulsed CO(2) laser, operating both on regular and hot bands, to excite the (13)CD(3)OH methanol isotopomer. This has lead to the observation of 13 new high-threshold far-infrared laser emissions (also identified as terahertz laser lines), with frequencies in the range between 24.11 and 102.56 cm(-1) (0.72-3.07 THz). The absorption transitions leading to these new FIR laser emissions have been located by observing the optoacoustic absorption spectra around the CO(2) emissions. Here, we present these new far-infrared laser lines, characterized in wavelength, polarization, offset relative to the center of the pumping CO(2) laser transition, relative intensity, and optimum operation pressure.
Resumo:
Includes bibliography
Resumo:
Physical and chemical adsorption of CO 2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO 2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO 2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO 2 on the ZnO(0001) surface show that the p orbitals of CO 2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band. [Figure not available: see fulltext.] © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The formation of substituted 2-pyrrolidinones and indoles by the reduction of the secondary nitro group in appropriate 3-aryl-2-methylene-4-nitroalkanoates afforded by Baylis-Hillman chemistry via different reducing agents is described. The 3-aryl-2-methylene-4-nitroalkanoate obtained from SN2 nucleophilic reaction between the acetate of Baylis-Hillman adducts and ethyl nitroacetate upon reduction with indium-HCl furnishes a mixture of cis and trans substituted phenyl-3-methylene-2-pyrrolidinones. In contrast, similar reductions of analogous substrates derived from nitroethane stereoselectively furnished only the trans substituted phenyl-3-methylene-2-pyrrolidinones. On the other hand the SnCl2.2H2O-promoted reductions of substrates derived from nitro ethylacetate give oxime derivatives while the ones obtained from nitroethane yield a mixture of cis and trans 4-aryl-3-methylene-2-pyrrolidinones. Alternatively, the SnCl2.2H2O-promoted reduction of substituted 2-nitrophenyl-2-methylene-alkanoate furnished from ethyl nitroacetate yields 3-(1-alkoxycarbonyl-vinyl)-1H-indole-2-carboxylate while indium-promoted reaction of this substrate leads to a complex mixture. Analogous reactions with SnCl2.2H2O of substituted 2-nitrophenyl-2-methylene-alkanoate obtained from nitroethane yield 4-alkyl-3-methylene-2-quinolones in moderate yields
Resumo:
The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric CO(2), likely controlled by the biological pump and biogeochemical cycles. The two most important regions of the ocean for exchange of CO(2) with the atmosphere are the equatorial Pacific and the Southern Ocean ( SO), the former a net source and the latter a net sink under present conditions. The equatorial Pacific has been shown to be a Si(OH)(4)-limited ecosystem, a consequence of the low source Si(OH)(4) concentrations in upwelled water that has its origin in the SO. This teleconnection for nutrients between the two regions suggests an oscillatory relationship that may influence or control glacial cycles. Opal mass accumulation rate (MAR) data and delta(15)N measurements in equatorial cores are interpreted with predictions from a one- dimensional Si(OH)(4)-limited ecosystem model (CoSINE) for the equatorial Pacific. The results suggest that equatorial Pacific surface CO(2) processes are in opposite phase to that of the global atmosphere, providing a negative feedback to the glacial cycle. This negative feedback is implemented through the effect of the SO on the equatorial Si(OH)(4) supply. An alternative hypothesis, that the whole ocean becomes Si(OH)(4) poor during cooling periods, is suggested by low opal MAR in cores from both equatorial and Antarctic regions, perhaps as a result of low river input. terminations in this scenario would result from blooms of coccolithophorids triggered by low Si(OH)(4) concentrations.