996 resultados para quantum interference


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model of collisional quantum interference (CQI) is developed in a diatom-diatom system based on the first-order Born approximation of time-dependent perturbation theory and the multipolar interaction potential. The transition cross section is obtained. The relations between the differential and integral interference angles are discussed. The key factors on the determination of the differential and integral interference angles are obtained. The changing tendency of the interference angles with the experimental temperatures is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conductance of atomic-sized metallic point contacts is shown to be strongly voltage dependent due to quantum interference with impurities even in samples with low impurity concentrations. Transmission through these small contacts depends not only on the local atomic structure at the contact but also on the distribution of impurities or defects within a coherence length of the contact. In contrast with other mesoscopic systems we show that transport through atomic contacts is coherent even at room temperature. The use of a scanning tunneling microscope (STM) makes it possible to fabricate one atom contacts of gold whose transmission can be controlled by manipulation of the contact allowing inelastic spectroscopy in such small contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the effect of quantum interference on population distribution and photon statistics of a cavity field interacting with dressed states of a strongly driven three-level atom. We analyse three coupling configurations of the cavity field to the driven atom, with the cavity frequency tuned to the outer Rabi sideband, the inner Rabi sideband and the central frequency of the 'singly dressed' three-level atom. The quantum doubly dressed states for each configuration are identified and the population distribution and photon statistics are interpreted in terms of transitions among these dressed states and their populations. We find that the population distribution depends strongly on quantum interference and the cavity damping. For the cavity field tuned to the outer or inner Rabi sidebands the cavity damping induces transitions between the dressed states which are forbidden for the ordinary spontaneous emission. Moreover, we find that in the case of the cavity field coupled to the inner Rabi sideband the population distribution is almost Poissonian with a large average number of photons that can be controlled by quantum interference. This system can be considered as a one-atom dressed-state laser with controlled intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a three-level V-type atomic system with the ground state coupled by a laser field to only one of the excited states, and with the two excited states coupled together by a dc field. Although the dipole moments of the two dipole-allowed transitions are assumed perpendicular, we demonstrate that this system emulates to a large degree a three-level system with parallel dipole moments-the latter being a system that exhibits quantum interference and displays a number of interesting features. As examples, we show that the system can produce extremely large values for the intensity-intensity correlation function, and that its resonance fluorescence spectrum can display ultranarrow lines. The dressed states for this system are identified, and the spectral features are interpreted in terms of transitions among these dressed states. We also show that this system is capable of exhibiting considerable squeezing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several of the most interesting quantum effects can or could be observed in nanoscopic systems. For example, the effect of strong correlations between electrons and of quantum interference can be measured in transport experiments through quantum dots, wires, individual molecules and rings formed by large molecules or arrays of quantum dots. In addition, quantum coherence and entanglement can be clearly observed in quantum corrals. In this paper we present calculations of transport properties through Aharonov-Bohm strongly correlated rings where the characteristic phenomenon of charge-spin separation is clearly observed. Additionally quantum interference effects show up in transport through pi-conjugated annulene molecules producing important effects on the conductance for different source-drain configurations, leading to the possibility of an interesting switching effect. Finally, elliptic quantum corrals offer an ideal system to study quantum entanglement due to their focalizing properties. Because of an enhanced interaction between impurities localized at the foci, these systems also show interesting quantum dynamical behaviour and offer a challenging scenario for quantum information experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The term “vagueness” describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno’s sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib’s and Pelletier’s (2011) theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful as this classical perspective is, we show that it falls short of providing an adequate coverage of the relevant empirical results. In the final part, we will argue that a substan- tial modification of the analysis put forward by Alxatib and Pelletier and its probabilistic pendant is needed. The proposed modification replaces the standard notion of probabilities by quantum probabilities. The crucial phenomenon of borderline contradictions can be explained then as a quantum interference phenomenon.