998 resultados para quantum interaction
Resumo:
One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.
Resumo:
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field phi(c), and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schrodinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field phi(c), a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Resumo:
We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]
Resumo:
A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation,first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.
Resumo:
We construct an invisible quantum barrier which represents the phenomenon of quantum reflection using available data on atom-wall and Bose-Einstein-condensate-wall reflection. We use the Abel equation to invert the data. The resulting invisible quantum barrier is double valued in both axes. We study this invisible barrier in the case of atom and Bose-Einstein condensate (BEC) reflection from a solid silicon surface. A time-dependent, one-spatial-dimension Gross-Pitaevskii equation is solved for the BEC case. We found that the BEC behaves very similarly to the single atom except for size effects, which manifest themselves in a maximum in the reflectivity at small distances from the wall. The effect of the atom-atom interaction on the BEC reflection and correspondingly on the invisible barrier is found to be appreciable at low velocities and comparable to the finite-size effect. The trapping of an ultracold atom or BEC between two walls is discussed.
Resumo:
A fundamental interaction for electrons is their hyperfine interaction (HFI) with nuclear spins. HFI is well characterized in free atoms and molecules, and is crucial for purposes from chemical identification of atoms to trapped ion quantum computing. However, electron wave functions near atomic sites, therefore HFI, are often not accurately known in solids. Here we perform an all-electron calculation for conduction electrons in silicon and obtain reliable information on HFI. We verify the outstanding quantum spin coherence in Si, which is critical for fault-tolerant solid state quantum computing.
Resumo:
The results on the measurement of electrical conductivity and magnetoconductivity of a GaAs double quantum well between 0.5 and 1.1 K are reported. The zero magnetic-field conductivity is well described from the point of view of contributions made by both the weak localization and electron-electron interaction. At low field and low temperature, the magnetoconductivity is dominated by the weak localization effect only. Using the weak localization method, we have determined the electron dephasing times tau(phi) and tunneling times tau(t). Concerning tunneling, we concluded that tau(t) presents a minimum around the balance point; concerning dephasing, we observed an anomalous dependence on temperature and conductivity (or elastic mean free path) of tau(phi). This anomalous behavior cannot be explained in terms of the prevailing concepts for the electron-electron interaction in high-mobility two-dimensional electron systems.
Resumo:
We present the experimental and theoretical studies of the magnetoresistance oscillations induced by the resonance transitions of electrons between the tunnel-coupled states in double quantum wells. The suppression of these oscillations with increasing temperature is irrelevant to the thermal broadening of the Fermi distribution and reflects the temperature dependence of the quantum lifetime of electrons. The gate control of the period and amplitude of the oscillations is demonstrated.
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.
Resumo:
We adopt the Dirac model for graphene and calculate the Casimir interaction energy between a plane suspended graphene sample and a parallel plane perfect conductor. This is done in two ways. First, we use the quantum-field-theory approach and evaluate the leading-order diagram in a theory with 2+1-dimensional fermions interacting with 3+1-dimensional photons. Next, we consider an effective theory for the electromagnetic field with matching conditions induced by quantum quasiparticles in graphene. The first approach turns out to be the leading order in the coupling constant of the second one. The Casimir interaction for this system appears to be rather weak. It exhibits a strong dependence on the mass of the quasiparticles in graphene.
Resumo:
We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.
Resumo:
We report electron-paramagnetic resonance (EPR) studies at similar to 9.5 GHz (X band) and similar to 34 GHz (Q band) of powder and single-crystal samples of the compound Cu(2)[TzTs](4) [N-thiazol-2-yl-toluenesulfonamidatecopper(II)], C(40)H(36)Cu(2)N(8)O(8)S(8), having copper(II) ions in dinuclear units. Our data allow determining an antiferromagnetic interaction J(0)=(-113 +/- 1) cm(-1) (H(ex)=-J(0)S(1)center dot S(2)) between Cu(II) ions in the dinuclear unit and the anisotropic contributions to the spin-spin coupling matrix D (H(ani)=S(1)center dot D center dot S(2)), a traceless symmetric matrix with principal values D/4=(0.198 +/- 0.003) cm(-1) and E/4=(0.001 +/- 0.003) cm(-1) arising from magnetic dipole-dipole and anisotropic exchange couplings within the units. In addition, the single-crystal EPR measurements allow detecting and estimating very weak exchange couplings between neighbor dinuclear units, with an estimated magnitude parallel to J(')parallel to=(0.060 +/- 0.015) cm(-1). The interactions between a dinuclear unit and the ""environment"" of similar units in the structure of the compound produce a spin dynamics that averages out the intradinuclear dipolar interactions. This coupling with the environment leads to decoherence, a quantum phase transition that collapses the dipolar interaction when the isotropic exchange coupling with neighbor dinuclear units equals the magnitude of the intradinuclear dipolar coupling. Our EPR experiments provide a new procedure to follow the classical exchange-narrowing process as a shift and collapse of the line structure (not only as a change of the resonance width), which is described with general (but otherwise simple) theories of magnetic resonance. Using complementary procedures, our EPR measurements in powder and single-crystal samples allow measuring simultaneously three types of interactions differing by more than three orders of magnitude (between 113 cm(-1) and 0.060 cm(-1)).
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
We have developed a nonlocal functional of the exchange interaction for the ground-state energy of quantum spin chains described by the Heisenberg Hamiltonian. An alternating chain is used to obtain the correlation energy and a local unit-cell approximation is defined in the context of the density-functional theory. The agreement with our exact numerical data, for small chains, is significantly better than a previous formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. The results can be particularly relevant in the study of finite spin-1/2 Heisenberg chains, with exchange couplings changing, magnitude, or even sign, from bond-to-bond.
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.