978 resultados para pyruvate dehydrogenase complex
Resumo:
Specific targeting of the recombinant, Ca2+ -sensitive photoprotein, aequorin to intracellular organelles has provided new insights into the mechanisms of intracellular Ca2+ homeostasis. When applied to small mammalian cells, a major limitation of this technique has been the need to average the signal over a large number of cells. This prevents the identification of inter- or intracellular heterogeneities. Here we describe the imaging in single mammalian cells (CHO.T) of [Ca2+] with recombinant chimeric aequorin targeted to mitochondria. This was achieved by optimizing expression of the protein through intranuclear injection of cDNA and through the use of a charge-coupled device camera fitted with a dual microchannel plate intensifier. This approach allows accurate quantitation of the kinetics and extent of the large changes in mitochondrial matrix [Ca2+] ([Ca2+](m)) that follow receptor stimulation and reveal different behaviors of mitochondrial populations within individual cells. The technique is compared with measurements of [Ca2+](m) using the fluorescent indicator, rhod2. Comparison of [Ca2+](m) with the activity of the Ca2+ -sensitive matrix enzyme, pyruvate dehydrogenase (PDH), reveals that this enzyme is a target of the matrix [Ca2+] changes. Peak [Ca2+](m) values following receptor stimulation are in excess of those necessary for full activation of PDH in situ, but may be necessary for the activation of other mitochondrial dehydrogenases. Finally, the data suggest that the complex regulation of PDH activity by a phosphorylation-dephosphorylation cycle may provide a means by which changes in the frequency of cytosolic (and hence mitochondrial) [Ca2+] oscillations can be decoded by mitochondria.
Resumo:
This thesis investigated whole body glucose disposal and the adaptive changes in skeletal muscle carbohydrate metabolism following 28 d of supplementation with 1000 mg R(+)-lipoic acid in young sedentary males (age, 22.1 ± 0.67 yr, body mass, 78.7 ± 10.3 kg, n=9). In certain individuals, lipoic acid decreased the 180-min area under the glucose concentration and insulin concentration curve during an oral glucose tolerance test (OGTT) (n=4). In the same individuals, lipoic acid supplementation decreased pyruvate dehydrogenase kinase activity (PDK) (0.09 ± 0.024 min"^ vs. 0.137 ± 0.023 min'\ n=4). The fasting levels of the activated form of pyruvate dehydrogenase (PDHa) were decreased following lipoic acid (0.42 ± 0.13 mmol-min'kg'^ vs. 0.82 ± 0.32 mmolrnin'^kg"\ n=4), yet increased to a greater extent during the OGTT (1.21 ± 0.34 mmol-min'kg"' vs. 0.81 ±0.13 mmolmin"'kg'\ n=4) following hpoic acid supplementation. No changes were demonstrated in the remaining subjects (n=5). It was concluded that improved glucose clearance during an OGTT following lipoic acid supplementation is assisted by increased muscle glucose oxidation through increased PDHa activation and decreased PDK activity in certain individuals.
Resumo:
The time course for the reversal of the adaptive increase in pyruvate dehydrogenase kinase (PDK) activity following a 6d high fat diet (HP: 4.2 ± 0.2 % carbohydrate; 75.6 ± 0.4 % fat; 19.5 ± 0.8 % protein) was investigated in human skeletal muscle (vastus lateralis). HF feeding increased PDK activity by 44% (from 0.081 ± 0.025 min"' to 0.247 ± 0.025 mm\p < 0.05). Following carbohydrate re-feeding, (88% carbohydrate; 5% fat; 7% protein), PDK activity had returned to baseline (0.111 ± 0.014 min"') within 3h of re-feeding. The active fraction of pyruvate dehydrognease (PDHa) was depressed following 6d of the HF diet (from 0.89 ± 0.21 mmol/min/kg WW to 0.32 ± 0.05 mmol/min/kg ww,p <0.05) and increased to pre-HF levels by 45 min of post re-feeding (0.74 ±0.19 mmol/min/kg ww) and remained elevated for 3h. Western blotting analysis of the PDK isoforms, PDK4 and PDK2, revealed a 31% increase in PDK4 protein content following the HF diet, with no change in PDK2 protein. This adaptive increase in PDK4 protein content was reversed with carbohydrate re-feeding. It was concluded that the adaptive up-regulation in PDK activity and PDK4 protein content was fiilly reversed by 3h following carbohydrate re-feeding.
Resumo:
Activation of pyruvate dehydrogenase (PDH), which converts pyruvate into acetyl-CoA, is accomplished by a pair of specific phosphatases (PDP 1 & 2). A cross-sectional study investigating the effect of aerobic capacity on PDP activity and expression found that: 1) PDP activity and PDP! protein expression were positively correlated with most aerobic capacity measures in males (n=lS), but not females (n=12); 2) only males showed a positive correlation between PDP activity and PDPl protein expression (r=0.47; p=O.05), indicating that the increase in PDP activity in males is largely explained by increased PDPl protein expression, but that females rely on another level for PDP activity regulation; and 3) PDP} and Ela protein expression increase in unison when expressed relative to the E2 core. These data suggest that with increased aerobic capacity there is an increased capacity for carbohydrate oxidation through PDH, via El a, and an increased ability to activate PDH, via PDP, when exercising maximally.
Resumo:
Several adult-onset neurodegenerative diseases are caused by genes with expanded CAG triplet repeats within their coding regions and extended polyglutamine (Qn) domains within the expressed proteins. Generally, in clinically affected individuals n ≥ 40. Glyceraldehyde 3-phosphate dehydrogenase binds tightly to four Qn disease proteins, but the significance of this interaction is unknown. We now report that purified glyceraldehyde 3-phosphate dehydrogenase is inactivated by tissue transglutaminase in the presence of glutathione S-transferase constructs containing a Qn domain of pathological length (n = 62 or 81). The dehydrogenase is less strongly inhibited by tissue transglutaminase in the presence of constructs containing shorter Qn domains (n = 0 or 10). Purified α-ketoglutarate dehydrogenase complex also is inactivated by tissue transglutaminase plus glutathione S-transferase constructs containing pathological-length Qn domains (n = 62 or 81). The results suggest that tissue transglutaminase-catalyzed covalent linkages involving the larger poly-Q domains may disrupt cerebral energy metabolism in CAG/Qn expansion diseases.
Resumo:
Four cDNAs, one encoding an α-subunit and three encoding β-subunits of the mitochondrial pyruvate dehydrogenase, were isolated from maize (Zea mays L.) libraries. The deduced amino acid sequences of both α- and β-subunits are approximately 80% identical with Arabidopsis and pea (Pisum sativum L.) homologs. The mature N terminus was determined for the β-subunit by microsequencing the protein purified from etiolated maize shoot mitochondria and was resolved by two-dimensional gel electrophoresis. This single isoelectric species comprised multiple isoforms. Both α- and β-subunits are encoded by multigene families in maize, as determined by Southern-blot analyses. RNA transcripts for both α- and β-subunits were more abundant in roots than in young leaves or etiolated shoots. Pyruvate dehydrogenase activity was also higher in roots (5-fold) compared with etiolated shoots and leaves. Both subunits were present at similar levels in all tissues examined, indicating coordinated gene regulation. The protein levels were highest in heterotrophic organs and in pollen, which contained about 2-fold more protein than any other organ examined. The relative abundance of these proteins in nonphotosynthetic tissues may reflect a high cellular content of mitochondria, a high level of respiratory activity, or an extra plastidial requirement for acetate.
Resumo:
Barley (Hordeum vulgare L.) leaves were used to isolate and characterize the chloroplast NAD(P)H dehydrogenase complex. The stroma fraction and the thylakoid fraction solubilized with sodium deoxycholate were analyzed by native polyacrylamide gel electrophoresis, and the enzymes detected with NADH and nitroblue tetrazolium were electroeluted. The enzymes electroeluted from band S from the stroma fraction and from bands T1 (ET1) and T2 from the thylakoid fraction solubilized with sodium deoxycholate had ferredoxin-NADP oxidoreductase (FNR; EC 1.18.1.2) and NAD(P)H-FeCN oxidoreductase (NAD[P]H-FeCNR) activities. Their NADPH-FeCNR activities were inhibited by 2′-monophosphoadenosine-5′-diphosphoribose and by enzyme incubation with p-chloromercuriphenylsulfonic acid (p-CMPS), NADPH, and p-CMPS plus NADPH. They presented Michaelis constant NADPH values that were similar to those of FNRs from several sources. Their NADH-FeCNR activities, however, were not inhibited by 2′-monophosphoadenosine-5′-diphosphoribose but were weakly inhibited by enzyme incubation with NADH, p-CMPS, and p-CMPS plus NADH. We found that only ET1 contained two polypeptides of 29 and 35 kD, which reacted with the antibodies raised against the mitochondrial complex I TYKY subunit and the chloroplast ndhA gene product, respectively. However, all three enzymes contained two polypeptides of 35 and 53 kD, which reacted with the antibodies raised against barley FNR and the NADH-binding 51-kD polypeptide of the mitochondrial complex I, respectively. The results suggest that ET1 is the FNR-containing thylakoidal NAD(P)H dehydrogenase complex.
Resumo:
Bovine pyruvate dehydrogenase phosphatase (PDP) is a Mg2+-dependent and Ca2+-stimulated heterodimer that is a member of the protein phosphatase 2C family and is localized to mitochondria. Insight into the function of the regulatory subunit of PDP (PDPr) has been gained. It decreases the sensitivity of the catalytic subunit of PDP (PDPc) to Mg2+. The apparent Km of PDPc for Mg2+ is increased about 5-fold, from about 0.35 mM to 1.6 mM. The polyamine spermine increases the sensitivity of PDP but not PDPc to Mg2+, apparently by interacting with PDPr. PDPc but not PDP can use the phosphopeptide RRAT(P)VA as a substrate. These observations are interpreted to indicate that PDPr blocks or distorts the active site of PDPc and that spermine produces a conformational change in PDPr that reverses its inhibitory effect. These findings suggest that PDPr may be involved in the insulin-induced activation of the mitochondrial PDP in adipose tissue, which is characterized by a decrease in its apparent Km for Mg2+.
Resumo:
According to the amyloid hypothesis for the pathogenesis of Alzheimer disease, beta-amyloid peptide (betaA) directly affects neurons, leading to neurodegeneration and tau phosphorylation. In rat hippocampal culture, betaA exposure activates tau protein kinase I/glycogen synthase kinase 3beta (TPKI/GSK-3beta), which phosphorylates tau protein into Alzheimer disease-like forms, resulting in neuronal death. To elucidate the mechanism of betaA-induced neuronal death, we searched for substrates of TPKI/GSK-3beta in a two-hybrid system and identified pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA in mitochondria. PDH was phosphorylated and inactivated by TPKI/GSK-3beta in vitro and also in betaA-treated hippocampal cultures, resulting in mitochondrial dysfunction, which would contribute to neuronal death. In cholinergic neurons, betaA impaired acetylcholine synthesis without affecting choline acetyltransferase activity, which suggests that PDH is inactivated by betaA-induced TPKI/GSK-3beta. Thus, TPKI/GSK-3beta regulates PDH and participates in energy metabolism and acetylcholine synthesis. These results suggest that TPKI/GSK-3beta plays a key role in the pathogenesis of Alzheimer disease.
Resumo:
The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.
Resumo:
PhD thesis in Bioengineering
Resumo:
Aeromonas hydrophila és un bacil gram-negatiu, patogen oportunista d’animal i humans. La patogènesi d’A. Hydrophila és multifactorial. A fi d'identificar gens implicats en la virulència de la soca PPD134/91 d’A. hydrophila, vam realitzar experiments de substracció gènica, que van dur a la detecció de 22 fragments d’ADN que codificaven 19 potencials factors de virulencia, incloent un gen que codificava una proteïna de sistema de secreció de tipus III (T3SS). La importància creixent del T3SS en la patogènesi de diversos bacteris, ens va dur a identificar i analitzar l'agrupació gènica del T3SS de les soques AH-1 i AH-3 d’A. hydrophila. La inactivació dels gens de T3SS aopB i aopD d’A. hydrophila AH-1, i ascV d’A. hydrophila AH-3, comporta una disminució de la citotoxicitat, un increment de la fagocitosi, i una reducció de la virulència en diferents models animals. Aquests resultats demostren que el T3SS és necessari per a la patogenicitat. També vam clonar i seqüenciar una ADP-ribosiltransferasa (AexT) a la soca AH-3 d’A. hydrophila, i vam demostrar que aquesta toxina és translocada via el T3SS, sistema que al seu torn sembla ser induïble in vitro en condicions de depleció de calci. El mutant en el gen aexT de la soca AH-3 d’A. hydrophila va mostrar una lleugera reducció de la virulència, assajada amb diferents mètodes. Mitjançant l'ús de diferents sondes d’ADN, vam determinar la presència del T3SS en soques tant clíniques com ambientals de diferents espècies del gènere Aeromonas: A. hydrophila, A. veronii, i A. caviae, i la codistribució d'aquesta agrupació gènica i el gen aexT. Finalment, amb la finalitat d'estudiar la regulació transcripcional de l'agrupació gènica de T3SS i de l’efector AexT A. hydrophila AH-3, vam aïllar els promotors predits per l’operó aopN-aopD i el gen aexT, i els vam fusionar amb el gen reporter gfp (Green Fluorescence Protein). A més, vam demostrar que l'expressió d'ambdós promotors depèn de diferents components bacterians, com per exemple el sistema de dos components PhoP/PhoQ, el sistema de quorum sensing AhyI/AhyR, o el complex piruvat deshidrogenasa.
Resumo:
Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.
Resumo:
RESUME Il a longtemps été admis que le glucose était le principal, sinon le seul substrat du métabolisme énergétique cérébral. Néanmoins, des études récentes indiquent que dans des situations particulières, d'autres substrats peuvent être employés. C'est le cas des monocarboxylates (lactate et pyruvate principalement). Bien que la barrière hématoencéphalique soit peu perméable à ces molécules, elles deviennent néanmoins des substrats possibles si elles sont produites localement. Les deux systèmes enzymatiques pivots des voies glycolytiques et oxydatives sont la lactate déshydrogénase (LDH, EC 1.1.1.27) qui catalyse l'interconversion du pyruvate et du lactate et le complexe pyruvate déshydrogénase qui catalyse la conversion irréversible du pyruvate en acétyl-CoA qui entre dans la respiration mitochondriale. Nous avons étudié la localisation, tant régionale que cellulaire, des isoformes LDH-1, LDH-5 et PDHEla dans le cerveau du chat et dé l'homme au moyen de diverses techniques histologiques. Dans un premier temps, des investigations par hybridation in situ au moyen d'oligosondes marquées au 33P sur de coupes de cerveau de chat ont permis de montrer une différence de l'expression des enzymes à vocation oxydative (LDH-1 et PDHA1, le gène codant pour la protéine PDHEIa) par rapport à LDH-5, isoforme qui catalyse préférentiellement la formation de lactate. LDH-1 et PDHA 1 ont des distributions similaires et sont enrichies dans de nombreuses structures cérébrales, comme l'hippocampe, de nombreux noyaux thalamiques et des structures pontiques. Le cortex cérébral exhibe également une expression importante de LDH-1 et PDH. LDH-5 a par contre une expression largement plus diffuse à travers le cerveau, bien que l'on trouve néanmoins un enrichissement plus important dans l'hippocampe. Ces résultats sont en accord avec les observations que nous avons précédemment publiées chez le rongeur pour LDH-1 et LDH-5 (Laughton et collaborateurs, 2000). Des analyses par PCR en temps réel ont confirmé que dans certaines régions, LDH-1 est exprimée de façon nettement plus importante que LDH-5. Dans un deuxième temps, nous avons appliqué sur des coupes histologiques d'hippocampe et de cortex occipital humain post-mortem des anticorps monoclonaux spécifiques de l'isoforme LDH-5 et la sous-unité PDHela du complexe pyruvate déshydrogénase. Là aussi, les immunoréactions révèlent une ségrégation régionale mais aussi cellulaire des deux enzymes. Dans les deux régions étudiées, LDH-5 est localisée exclusivement dans les astrocytes. Dans le cortex occipital, la matière blanche et également la couche I corticale sont immunopositives pour LDH-5. Dans l'hippocampe, le CA4 et l'alveus exhibe l'immunomarquage le plus intense pour LDH-5. Seuls des neurones (à de rares exceptions quelques astrocytes) sont immunopositifs à l'anticorps monoclonal dirigé contre PDHela. La couche IV du cortex occipital présente la plus forte immunoréaction. Dans l'hippocampe, une immunoréactivité est observée dans le stratum granulosum et à travers la région CA1 jusqu'à la région CA3. L'ensemble de ces résultats montre une hétérogénéité métabolique dans le cerveau et étaye l'hypothèse "astrocyte-neurone lactate shuttle" (ANL5) (Bittar et collaborateurs, 1996; Magistretti et Pellerin, 1999) qui propose que les astrocytes fournissent aux neurones activés du lactate comme substrat alternatif de leur métabolisme énergétique. ABSTRACT For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally. The two key enzymatic systems required for the use and production of these substats are lactate dehydrogenase (LDH; EC 1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA cycle and oxydative phosphorylation. Our study consisted in localizing these different systems with various histochemical procedures in the cat brain and two regions, i.e. hippocampus and primary visual cortex, of the human brain. First, by means of in situ hybridization with 33P labeled oligoprobes, we have demonstrated that the more oxidative enzymes (LDH-1 and PDHA1, the gene coding for PDHEla) are highly expressed in a variety of feline brain structures. These structures include the hippocampus, various thalamic nuclei and the pons. The cerebral cortex exhibits also a high LDH-1 and PDHAl expression. On the other hand, LDH-5 expression is poorer and more diffuse, although the hippocampus does seem to have a higher expression. These fmdings are consistent with our previous observation of the expression of LDH1 and LDH-5 in the rodent brain (Laughton et al, 2000). Real-time PCR (TagMan tm) revealed that, in various regions, LDH-1 is effectively more highly expressed than LDH-5. In a second set of experiments, monoclonal antibodies to LDH-5 and PDHeIa were applied to cryostat sections of post-mortem human hippocampus and occipital cortex. These procedures revealed not only that the two enzymes have different regional distributions, but also distinct cellular localisation. LDH-5 immunoreactivity is solely observed in astrocytes. In the occipital cortex, the white matter and layer I are immunopositive. In the hippocampus, the alveus and CA4 show LDH-5 immunoréactivity. PDHeIa has been detected, with few exceptions, only in neurons. Layer IV of the occipital cortex was most immmunoreactive. In the hippocampus, PDHela immunoreactivity is noticed in the stratum granulosum and through CA 1 to CA3 areas. The overall observations made in this study show that there is a metabolic heterogeneity in the brain and our findings support the hypothesis of an astrocyte-neuron lactate shuttle (ANLS)(Bittar et al., 1996; Magistretti & Pellerin, 1999) where astrocytes export to active neurons lactate to fuel their energy demands.