968 resultados para pulse propagation and solitons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this study is development of parallelised version of severely sequential and iterative numerical algorithms based on multi-threaded parallel platform such as a graphics processing unit. This requires design and development of a platform-specific numerical solution that can benefit from the parallel capabilities of the chosen platform. Graphics processing unit was chosen as a parallel platform for design and development of a numerical solution for a specific physical model in non-linear optics. This problem appears in describing ultra-short pulse propagation in bulk transparent media that has recently been subject to several theoretical and numerical studies. The mathematical model describing this phenomenon is a challenging and complex problem and its numerical modeling limited on current modern workstations. Numerical modeling of this problem requires a parallelisation of an essentially serial algorithms and elimination of numerical bottlenecks. The main challenge to overcome is parallelisation of the globally non-local mathematical model. This thesis presents a numerical solution for elimination of numerical bottleneck associated with the non-local nature of the mathematical model. The accuracy and performance of the parallel code is identified by back-to-back testing with a similar serial version.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose techniques of optical frequency conversion, pulse compression and signal copying based on a combination of cross-phase modulation using triangular pump pulses and subsequent propagation in a dispersive medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond laser microfabrication has emerged over the last decade as a 3D flexible technology in photonics. Numerical simulations provide an important insight into spatial and temporal beam and pulse shaping during the course of extremely intricate nonlinear propagation (see e.g. [1,2]). Electromagnetics of such propagation is typically described in the form of the generalized Non-Linear Schrdinger Equation (NLSE) coupled with Drude model for plasma [3]. In this paper we consider a multi-threaded parallel numerical solution for a specific model which describes femtosecond laser pulse propagation in transparent media [4, 5]. However our approach can be extended to similar models. The numerical code is implemented in NVIDIA Graphics Processing Unit (GPU) which provides an effitient hardware platform for multi-threded computing. We compare the performance of the described below parallel code implementated for GPU using CUDA programming interface [3] with a serial CPU version used in our previous papers [4,5]. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor. © 2011 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new science of nonlinear atom optics and atom lasers is evolving rapidly. There are similarities between many related areas in modern photonic and atom optics, particularly at the mean-field level. In both cases we can often use classical nonlinear wave equations to describe classical solitons, vortices, and other nonlinear structure. Atom-molecular coupling can be used to play the role of second-harmonic generation. This leads to novel types of soliton. In addition, quantum effects at low densities are likely to be readily observable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To determine the correlation between ocular blood flow velocities and ocular pulse amplitude (OPA) in glaucoma patients using colour Doppler imaging (CDI) waveform analysis. METHOD: A prospective, observer-masked, case-control study was performed. OPA and blood flow variables from central retinal artery and vein (CRA, CRV), nasal and temporal short posterior ciliary arteries (NPCA, TPCA) and ophthalmic artery (OA) were obtained through dynamic contour tonometry and CDI, respectively. Univariate and multiple regression analyses were performed to explore the correlations between OPA and retrobulbar CDI waveform and systemic cardiovascular parameters (blood pressure, blood pressure amplitude, mean ocular perfusion pressure and peripheral pulse). RESULTS: One hundred and ninety-two patients were included [healthy controls: 55; primary open-angle glaucoma (POAG): 74; normal-tension glaucoma (NTG): 63]. OPA was statistically different between groups (Healthy: 3.17 ± 1.2 mmHg; NTG: 2.58 ± 1.2 mmHg; POAG: 2.60 ± 1.1 mmHg; p < 0.01), but not between the glaucoma groups (p = 0.60). Multiple regression models to explain OPA variance were made for each cohort (healthy: p < 0.001, r = 0.605; NTG: p = 0.003, r = 0.372; POAG: p < 0.001, r = 0.412). OPA was independently associated with retrobulbar CDI parameters in the healthy subjects and POAG patients (healthy CRV resistance index: β = 3.37, CI: 0.16-6.59; healthy NPCA mean systolic/diastolic velocity ratio: β = 1.34, CI: 0.52-2.15; POAG TPCA mean systolic velocity: β = 0.14, CI 0.05-0.23). OPA in the NTG group was associated with diastolic blood pressure and pulse rate (β = -0.04, CI: -0.06 to -0.01; β = -0.04, CI: -0.06 to -0.001, respectively). CONCLUSIONS: Vascular-related models provide a better explanation to OPA variance in healthy individuals than in glaucoma patients. The variables that influence OPA seem to be different in healthy, POAG and NTG patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El problema: La flora nativa de Córdoba, actualmente amenazada, es rica en especies con potencial ornamental que todavía no se cultivan. El uso de estas plantas está limitado por la escasez de material biológico, la falta de conocimientos de su propagación y su insuficiente valoración pública. Hipótesis: La propagación y el cultivo de una amplia gama de plantas nativas cordobesas con potencial ornamental son técnicamente factibles y tienen potencial productivo y económico. Objetivo: Promover el uso de especies nativas ornamentales en la provincia de Córdoba. Objetivos específicos: 1. Desarrollar metodologías de propagación y cultivo de especies nativas con potencial ornamental; 2. Transferir estas metodologías a viveros privados y públicos; 3. Difundir los conocimientos obtenidos a instituciones educativas. Métodos: 1- Colección: Se realizarán viajes de campo para obtener semillas o esquejes de al menos 6 especies nativas seleccionadas. Las semillas se limpiarán y se conservarán en frío. 2- Propagación: En la primavera se sembrarán 100 semillas por especie, accesión y tratamiento; se registrará porcentaje y tiempo de germinación. Los plantines se trasplantarán a almácigos, se registrará supervivencia y crecimiento. Para la propagación vegetativa, se trasplantarán esquejes de estolones directamente a macetas. 3- Trasplante: En verano, los plantines se trasplantarán a macetas grandes; se registrará supervivencia y crecimiento durante un año. 4- Documentación: Se elaborarán protocolos de las metodologías adecuadas para la propagación de las especies, usos ornamentales y características relevantes. 5- Transferencia: Los protocolos, muestras de semillas y de plantas, se transferirán a dos viveros que se comprometan a continuar con el cultivo de las especies. 6- Difusión: Se realizarán cursos, talleres, charlas y pasantías para dar a conocer la propagación de plantas nativas en instituciones educativas, desde la primaria hasta la universidad. Resultados y productos esperados: 1- Protocolos de propagación de al menos 6 especies nativas ornamentales y su transferencia a viveros, como base de una actividad productiva novedosa. 2- Un aporte a la conservación ex situ y el uso sostenible de la flora nativa. 3- Una mayor valoración de esta en la comunidad educativa. Importancia: 1- Desarrollo de la producción de plantas nativas con valor ornamental, como una alternativa económica. 2- Conservación ex situ y uso sostenible de la flora nativa. 3- Difusión del conocimiento del valor ornamental de las nativas. 4. Información científica de la biología y ecología de especies nativas. Pertinencia: Productos (ver Resultados). El impacto inmediato esperado es un aumento en la propagación, la producción, la demanda, la comercialización y el uso de plantas ornamentales nativas. Se espera también la generación de nuevos conocimientos y el estímulo de líneas de investigación biológicas y agronómicas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IMPLICATIONS: A new combined ear sensor was tested for accuracy in 20 critically ill children. It provides noninvasive and continuous monitoring of arterial oxygen saturation, arterial carbon dioxide tension, and pulse rate. The sensor proved to be clinically accurate in the tested range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Adiponectin, arterial stiffness, as well components of the renin-angiotensin system are associated with cardiovascular risk. This study was aimed to investigate whether plasma adiponectin was directly linked with pulse pressure (PP), as a marker for arterial stiffness, and the renin-angiotensin system (RAS). Methods and materials: A family-based study in subjects of African descent enriched with hypertensive patients was carried out in the Seychelles. Fasting plasma adiponectin was determined by ELISA, plasma renin activity according to the antibody-trapping principle and plasma aldosterone by radioimmunoassay. Daytime ambulatory blood pressure (BP) was measured using Diasys Integra devices. PP was calculated as the difference between systolic and diastolic BP. The association of adiponectin with PP, plasma renin activity and plasma aldosterone were analyzed using generalized estimating equations with a gaussian family link and an exchangeable correlation structure to account for familial aggregation. Results: Data from 335 subjects from 73 families (152 men, 183 women) were available. Men and women had mean (SD) age of 45.4 ± 11.1 and 47.3 ± 12.4 years, BMI of 26.3 ± 4.4 and 27.8 ± 5.1 kg/m2, daytime systolic/diastolic BP of 132.6 ± 15.4 / 86.1 ± 10.9 and 130 ± 17.6 / 83.4 ± 11.1 mmHg, and daytime PP of 46.5 ± 9.9 and 46.7 ± 10.7 mmHg, respectively. Plasma adiponectin was 4.4± 3.04 ng/ml in men and 7.39 ± 5.44 ng/ml in women (P <0.001). After adjustment for age, sex and BMI, log-transformed adiponectin was negatively associated with daytime PP (-0.009 ± 0.003, P = 0.004), plasma renin activity (-0.248 ± 0.080, P = 0.002) and plasma aldosterone (-0.004 ± 0.002, P = 0.014). Conclusion: Low adiponectin is associated with increased ambulatory PP and RAS activation in subjects of African descent. Our data are consistent with the observation that angiotensin II receptor blockers increase adiponectin in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.