797 resultados para protocol stack
Resumo:
The networking and digitalization of audio equipment has created a need for control protocols. These protocols offer new services to customers and ensure that the equipment operates correctly. The control protocols used in the computer networks are not directly applicable since embedded systems have resource and cost limitations. In this master's thesis the design and implementation of new loudspeaker control network protocols are presented. The protocol stack was required to be reliable, have short response times, configure the network automatically and support the dynamic addition and removal of loudspeakers. The implemented protocol stack was also required to be as efficient and lightweight as possible because the network nodes are fairly simple and lack processing power. The protocol stack was thoroughly tested, validated and verified. The protocols were formally described using LOTOS (Language of Temporal Ordering Specifications) and verified using reachability analysis. A prototype of the loudspeaker network was built and used for testing the operation and the performance of the control protocols. The implemented control protocol stack met the design specifications and proved to be highly reliable and efficient.
Resumo:
Diplomityössä on tutkittu sulautetun järjestelmän liittämistä Ethernet-verkkoon sekä TCP/IP-protokollapinoon kuuluvien tavallisimpien protokollien toimintaa. Työn tuloksien perusteella on suunniteltu harjoitustyö, jota voidaan käyttää sähkötekniikan osaston opetuksessa. Työssä hankittiin Atmelin sulautettu Web-serverikortti (EWS) ja STK500-kortti serverin ohjelmointiin. Serverin mukana tuli Internet-yhteyden mahdollistava TCP/IP-pinon lähdekoodi. Työssä selvitettiin TCP/IP:hen kuuluvien protokollien toimintaa teoriassa ja käytännön toteutusta EWS:n avulla. Lähdekoodiin lisättiin ominaisuudet, joiden avulla laite hakee kellonaikatiedot aikapalvelimelta time-protokollaa käyttäen ja lähettää sähköpostia määriteltyyn osoitteeseen sähköpostipalvelimen kautta. Laitetta käytettiin sekä palvelimena että asiakkaana. Työssä perehdyttiin sulautettujen järjestelmien yleisiin ominaisuuksiin ja erilaisiin verkonhallinnan apuohjelmiin. Työssä tutkittiin palvelin- ja asiakaskoneen välillä Ethernetissä kulkevaa verkkoliikennettä. Työssä minimoitiin protokollatiedostojen viemä tila prosessorin muistista ja tutkittiin Internet-yhteyden kuluttamien kellojaksojen määrää. Työssä selvitettiin tietoturva-kysymysten merkitystä ja toteutusta sulautetuissa järjestelmissä.
Resumo:
Lähitulevaisuudessa langattomien järjestelmien kaupalliset mahdollisuudet tulevat olemaan valtavia. Tutkiaksemme tulevia tarpeita, tässä diplomityössä esitellään kuinka voidaan suunnitella ja toteuttaa avoin langaton asiakas-palvelin järjestelmä. Järjestelmänä päätettiin käyttää Bluetooth:ia. Tutkituista langattomista standardeista Bluetooth sopii parhaiten akkukäyttöiselle laitteelle, jonka tulee olla monipuolinen. Lisäksi Bluetooth:iin on liitetty suuria kaupallisia odotuksia ja yksi työn tavoitteista olikin tutkia, ovatko nämä odotukset realistisia. Bluetooth:iin havaittiin liittyvän paljon ylimainontaa ja, sen todettiin olevan monimutkainen. Sillä on kuitenkin paljon ominaisuuksia ja erilaisten käyttöprofiilien avulla sitä voidaan käyttää monenlaisiin tehtäviin. Suunniteltu järjestelmä ajaa socket-palvelinta Bluetooth-yhteyden päällä. Tietyntyyppiseen liikenteeseen erikoistuneet socket:t tarjoavat vaaditun laajennattavuuden. Palvelin toteutetiin Linux-säikeenä ja se hallitsee Bluetooth protokollapinoa sekä sovelluksia, joita suoritetaan palvelimella. Näiden sovelluksien palvelut ovat muiden käytössä Bluetooth:n kautta.
Resumo:
The thesis presents an overview of third generation of IP telephony. The architecture of 3G IP Telephony and its components are described. The main goal of the thesis is to investigate the interface between the Call Processing Server and Multimedia IP Networks. The interface functionality, proposed protocol stack and a general description are presented in the thesis. To provide useful services, 3G IP Telephony requires a set of control protocols for connection establishment, capabilities exchange and conference control. The Session Initiation Protocol (SIP) and the H.323 are two protocols that meet these needs. In the thesis these two protocols are investigated and compared in terms of Complexity, Extensibility, Scalability, Services, Resource Utilization and Management.
Resumo:
This thesis discusses the design and implementation of a real-time musical pair improvisation scenario for mobile devices. In the scenario transferring musical information over a network connection was required. The suitability of available wireless communication technologies was evaluated and communication was analyzed and designed on multiple layers of TCP/IP protocol stack. Also an application layer protocol was designed and implemented for the scenario. The implementation was integrated into a mobile musical software for children using available software components and libraries although the used platform lead to hardware and software constraints. Software limitations were taken into account in design. The results show that real-time musical improvisation can be implemented with wireless communication and mobile technology. The results also show that link layer had the most significant effect on real-time communication in the scenario.
Resumo:
The General Packet Radio Service (GPRS) has been developed for the mobile radio environment to allow the migration from the traditional circuit switched connection to a more efficient packet based communication link particularly for data transfer. GPRS requires the addition of not only the GPRS software protocol stack, but also more baseband functionality for the mobile as new coding schemes have be en defined, uplink status flag detection, multislot operation and dynamic coding scheme detect. This paper concentrates on evaluating the performance of the GPRS coding scheme detection methods in the presence of a multipath fading channel with a single co-channel interferer as a function of various soft-bit data widths. It has been found that compressing the soft-bit data widths from the output of the equalizer to save memory can influence the likelihood decision of the coding scheme detect function and hence contribute to the overall performance loss of the system. Coding scheme detection errors can therefore force the channel decoder to either select the incorrect decoding scheme or have no clear decision which coding scheme to use resulting in the decoded radio block failing the block check sequence and contribute to the block error rate. For correct performance simulation, the performance of the full coding scheme detection must be taken into account.
Cross-layer design for MIMO systems over spatially correlated and keyhole Nakagami-m fading channels
Resumo:
Cross-layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross-layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T-ARQ) is proposed for multiple-input multiple-output (MIMO) systems employing orthogonal space--time block coding (OSTBC). The performance of the proposed cross-layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami-m fading channels and keyhole Nakagami-m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
In the last decade mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. It is expected that this tendency will continue to increase with the convergence of fixed Internet wired networks with mobile ones and with the evolution to the full IP architecture paradigm. Therefore mobile wireless communications will be of paramount importance on the development of the information society of the near future. In particular a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation. 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigm). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications to be available in the near future. The approach followed in the design and implementation of the mobile wireless networks of current generation (2G and 3G) has been the stratification of the architecture into a communication protocol model composed by a set of layers, in which each one encompasses some set of functionalities. In such protocol layered model, communications is only allowed between adjacent layers and through specific interface service points. This modular concept eases the implementation of new functionalities as the behaviour of each layer in the protocol stack is not affected by the others. However, the fact that lower layers in the protocol stack model do not utilize information available from upper layers, and vice versa, downgrades the performance achieved. This is particularly relevant if multiple antenna systems, in a MIMO (Multiple Input Multiple Output) configuration, are implemented. MIMO schemes introduce another degree of freedom for radio resource allocation: the space domain. Contrary to the time and frequency domains, radio resources mapped into the spatial domain cannot be assumed as completely orthogonal, due to the amount of interference resulting from users transmitting in the same frequency sub-channel and/or time slots but in different spatial beams. Therefore, the availability of information regarding the state of radio resources, from lower to upper layers, is of fundamental importance in the prosecution of the levels of QoS expected from those multimedia applications. In order to match applications requirements and the constraints of the mobile radio channel, in the last few years researches have proposed a new paradigm for the layered architecture for communications: the cross-layer design framework. In a general way, the cross-layer design paradigm refers to a protocol design in which the dependence between protocol layers is actively exploited, by breaking out the stringent rules which restrict the communication only between adjacent layers in the original reference model, and allowing direct interaction among different layers of the stack. An efficient management of the set of available radio resources demand for the implementation of efficient and low complexity packet schedulers which prioritize user’s transmissions according to inputs provided from lower as well as upper layers in the protocol stack, fully compliant with the cross-layer design paradigm. Specifically, efficiently designed packet schedulers for 4G networks should result in the maximization of the capacity available, through the consideration of the limitations imposed by the mobile radio channel and comply with the set of QoS requirements from the application layer. IEEE 802.16e standard, also named as Mobile WiMAX, seems to comply with the specifications of 4G mobile networks. The scalable architecture, low cost implementation and high data throughput, enable efficient data multiplexing and low data latency, which are attributes essential to enable broadband data services. Also, the connection oriented approach of Its medium access layer is fully compliant with the quality of service demands from such applications. Therefore, Mobile WiMAX seems to be a promising 4G mobile wireless networks candidate. In this thesis it is proposed the investigation, design and implementation of packet scheduling algorithms for the efficient management of the set of available radio resources, in time, frequency and spatial domains of the Mobile WiMAX networks. The proposed algorithms combine input metrics from physical layer and QoS requirements from upper layers, according to the crosslayer design paradigm. Proposed schedulers are evaluated by means of system level simulations, conducted in a system level simulation platform implementing the physical and medium access control layers of the IEEE802.16e standard.
Resumo:
The thesis deals with channel coding theory applied to upper layers in the protocol stack of a communication link and it is the outcome of four year research activity. A specific aspect of this activity has been the continuous interaction between the natural curiosity related to the academic blue-sky research and the system oriented design deriving from the collaboration with European industry in the framework of European funded research projects. In this dissertation, the classical channel coding techniques, that are traditionally applied at physical layer, find their application at upper layers where the encoding units (symbols) are packets of bits and not just single bits, thus explaining why such upper layer coding techniques are usually referred to as packet layer coding. The rationale behind the adoption of packet layer techniques is in that physical layer channel coding is a suitable countermeasure to cope with small-scale fading, while it is less efficient against large-scale fading. This is mainly due to the limitation of the time diversity inherent in the necessity of adopting a physical layer interleaver of a reasonable size so as to avoid increasing the modem complexity and the latency of all services. Packet layer techniques, thanks to the longer codeword duration (each codeword is composed of several packets of bits), have an intrinsic longer protection against long fading events. Furthermore, being they are implemented at upper layer, Packet layer techniques have the indisputable advantages of simpler implementations (very close to software implementation) and of a selective applicability to different services, thus enabling a better matching with the service requirements (e.g. latency constraints). Packet coding technique improvement has been largely recognized in the recent communication standards as a viable and efficient coding solution: Digital Video Broadcasting standards, like DVB-H, DVB-SH, and DVB-RCS mobile, and 3GPP standards (MBMS) employ packet coding techniques working at layers higher than the physical one. In this framework, the aim of the research work has been the study of the state-of-the-art coding techniques working at upper layer, the performance evaluation of these techniques in realistic propagation scenario, and the design of new coding schemes for upper layer applications. After a review of the most important packet layer codes, i.e. Reed Solomon, LDPC and Fountain codes, in the thesis focus our attention on the performance evaluation of ideal codes (i.e. Maximum Distance Separable codes) working at UL. In particular, we analyze the performance of UL-FEC techniques in Land Mobile Satellite channels. We derive an analytical framework which is a useful tool for system design allowing to foresee the performance of the upper layer decoder. We also analyze a system in which upper layer and physical layer codes work together, and we derive the optimal splitting of redundancy when a frequency non-selective slowly varying fading channel is taken into account. The whole analysis is supported and validated through computer simulation. In the last part of the dissertation, we propose LDPC Convolutional Codes (LDPCCC) as possible coding scheme for future UL-FEC application. Since one of the main drawbacks related to the adoption of packet layer codes is the large decoding latency, we introduce a latency-constrained decoder for LDPCCC (called windowed erasure decoder). We analyze the performance of the state-of-the-art LDPCCC when our decoder is adopted. Finally, we propose a design rule which allows to trade-off performance and latency.
Resumo:
The fourth industrial revolution is paving the way for Industrial Internet of Things applications where industrial assets (e.g., robotic arms, valves, pistons) are equipped with a large number of wireless devices (i.e., microcontroller boards that embed sensors and actuators) to enable a plethora of new applications, such as analytics, diagnostics, monitoring, as well as supervisory, and safety control use-cases. Nevertheless, current wireless technologies, such as Wi-Fi, Bluetooth, and even private 5G networks, cannot fulfill all the requirements set up by the Industry 4.0 paradigm, thus opening up new 6G-oriented research trends, such as the use of THz frequencies. In light of the above, this thesis provides (i) a broad overview of the main use-cases, requirements, and key enabling wireless technologies foreseen by the fourth industrial revolution, and (ii) proposes innovative contributions, both theoretical and empirical, to enhance the performance of current and future wireless technologies at different levels of the protocol stack. In particular, at the physical layer, signal processing techniques are being exploited to analyze two multiplexing schemes, namely Affine Frequency Division Multiplexing and Orthogonal Chirp Division Multiplexing, which seem promising for high-frequency wireless communications. At the medium access layer, three protocols for intra-machine communications are proposed, where one is based on LoRa at 2.4 GHz and the others work in the THz band. Different scheduling algorithms for private industrial 5G networks are compared, and two main proposals are described, i.e., a decentralized scheme that leverages machine learning techniques to better address aperiodic traffic patterns, and a centralized contention-based design that serves a federated learning industrial application. Results are provided in terms of numerical evaluations, simulation results, and real-world experiments. Several improvements over the state-of-the-art were obtained, and the description of up-and-running testbeds demonstrates the feasibility of some of the theoretical concepts when considering a real industry plant.
Resumo:
In next generation Internet-of-Things, the overhead introduced by grant-based multiple access protocols may engulf the access network as a consequence of the proliferation of connected devices. Grant-free access protocols are therefore gaining an increasing interest to support massive multiple access. In addition to scalability requirements, new demands have emerged for massive multiple access, including latency and reliability. The challenges envisaged for future wireless communication networks, particularly in the context of massive access, include: i) a very large population size of low power devices transmitting short packets; ii) an ever-increasing scalability requirement; iii) a mild fixed maximum latency requirement; iv) a non-trivial requirement on reliability. To this aim, we suggest the joint utilization of grant-free access protocols, massive MIMO at the base station side, framed schemes to let the contention start and end within a frame, and succesive interference cancellation techniques at the base station side. In essence, this approach is encapsulated in the concept of coded random access with massive MIMO processing. These schemes can be explored from various angles, spanning the protocol stack from the physical (PHY) to the medium access control (MAC) layer. In this thesis, we delve into both of these layers, examining topics ranging from symbol-level signal processing to succesive interference cancellation-based scheduling strategies. In parallel with proposing new schemes, our work includes a theoretical analysis aimed at providing valuable system design guidelines. As a main theoretical outcome, we propose a novel joint PHY and MAC layer design based on density evolution on sparse graphs.
Resumo:
The BP (Bundle Protocol) version 7 has been recently standardized by IETF in RFC 9171, but it is the whole DTN (Delay-/Disruption-Tolerant Networking) architecture, of which BP is the core, that is gaining a renewed interest, thanks to its planned adoption in future space missions. This is obviously positive, but at the same time it seems to make space agencies more interested in deployment than in research, with new BP implementations that may challenge the central role played until now by the historical BP reference implementations, such as ION and DTNME. To make Unibo research on DTN independent of space agency decisions, the development of an internal BP implementation was in order. This is the goal of this thesis, which deals with the design and implementation of Unibo-BP: a novel, research-driven BP implementation, to be released as Free Software. Unibo-BP is fully compliant with RFC 9171, as demonstrated by a series of interoperability tests with ION and DTNME, and presents a few innovations, such as the ability to manage remote DTN nodes by means of the BP itself. Unibo-BP is compatible with pre-existing Unibo implementations of CGR (Contact Graph Routing) and LTP (Licklider Transmission Protocol) thanks to interfaces designed during the thesis. The thesis project also includes an implementation of TCPCLv3 (TCP Convergence Layer version 3, RFC 7242), which can be used as an alternative to LTPCL to connect with proximate nodes, especially in terrestrial networks. Summarizing, Unibo-BP is at the heart of a larger project, Unibo-DTN, which aims to implement the main components of a complete DTN stack (BP, TCPCL, LTP, CGR). Moreover, Unibo-BP is compatible with all DTNsuite applications, thanks to an extension of the Unified API library on which DTNsuite applications are based. The hope is that Unibo-BP and all the ancillary programs developed during this thesis will contribute to the growth of DTN popularity in academia and among space agencies.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research.
Resumo:
Molecular characterization of Cryptosporidium spp.oocysts in clinical samples is useful for public health since it allows the study of sources of contamination as well as the transmission in different geographical regions. Although widely used in developed countries, in Brazil it is restricted to academic studies, mostly using commercial kits for the extraction of genomic DNA, or in collaboration with external reference centers, rendering the method expensive and limited. The study proposes the application of the modifications recently introduced in the method improving feasibility with lower cost. This method was efficient for clinical samples preserved at -20 °C for up to six years and the low number of oocysts may be overcomed by repetitions of extraction.