978 resultados para proteins in human nutrition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyruvate dehydrogenase (PDH) is an important regulator of carbohydrate oxidation during exercise and its activity can be down-regulated by an increase in dietary fat. The purpose of this study was to determine the acute metabolic effects of differential dietary fatty acids on the activation of PDH in its active form (PDHa) at rest and at the onset of moderate-intensity exercise. University-aged male subjects (n=7) underwent 2 fat loading trials spaced at least 2 weeks apart. Subjects consumed saturated (SFA) or polyunsaturated (PUFA) fat over the course of 5 hours. Following this, participants cycled at 65% VO2 max for 15 min. Muscle biopsies were taken prior to and following fat loading and at 1 min exercise. Plasma free fatty acids increased from 0.15 ± 0.07 to 0.54 ± 0.19 mM over 5 hours with SFA and from 0.1 1 ± 0.04 to 0.35 ±0.13 mM with PUFA. PDHa activity was unchanged following fat loading, but increased at the onset of exercise in the SFA trial, from 1 .4 ± 0.4 to 2.2 ± 0.4 /xmol/min/kg wet wt. This effect was negated in the PUFA trial (1 .2 ± 0.3 to 1 .3 ± 0.3 pimol/min/kg wet wt.). PDH kinase (PDK) was unchanged in both trials, suggesting that the attenuation of PDHa activity with PUFA was a result of changes in the concentrations of intramitochondrial effectors, more specifically intramitochondrial NADH or Ca^*. Our findings suggest that attenuated PDHa activity participates in the preferential oxidation of PUFA during moderateintensity exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing need in biology and clinical medicine to robustly and reliably measure tens-to-hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma, and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and 7 control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to sub-nanogram/mL sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and inter-laboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy isotope labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an inter-laboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality c`ontrol measures, enables sensitive, specific, reproducible and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hugh Sinclair Unit of Human Nutrition (HSUHN) at the University of Reading was founded in October 1995 with the appointment of Christine Williams OBE as the first Hugh Sinclair Chair in Human Nutrition. This was made possible by the competitively won funds from the estate and legacy of the late Professor Hugh Macdonald Sinclair (1910–1990). The vision for the newly established HSUHN was to ‘strengthen the evidence base for dietary recommendations for prevention of degenerative chronic diseases’. This has remained the research focus of the HSUHN under the leadership of Professors Christine Williams (1995–2005), Ian Rowland (2006–2013) and Julie Lovegrove (2014-present). Our mission is to improve population health and evaluate mechanisms of action for the effects of dietary components on health, which reflects Hugh Sinclair’s life ambition within nutritional science. Over the past 20 years, the HSUHN has developed an international reputation within the nutrition science community, and in recognition of the 20th anniversary, this paper highlights Hugh Sinclair’s contributions to the field of nutrition and key research achievements by members of the Unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines the role of dietary proteins on the maintenance of skeletal muscle mass in men who may or may not be insulin-resistant. It identified that dairy foods are powerful stimulators of muscle growth however this response is reduced during insulin-resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embryonic stem cells (ESCs) possess two unique characteristics: infinite self-renewal and the potential to differentiate into almost every cell type (pluripotency). Recently, global expression analyses of metastatic breast and lung cancers revealed an ESC-like expression program or signature, specifically for cancers that are mutant for p53 function. Surprisingly, although p53 is widely recognized as the guardian of the genome, due to its roles in cell cycle checkpoints, programmed cell death or senescence, relatively little is known about p53 functions in normal cells, especially in ESCs. My hypothesis is that p53 has specific transcription regulatory functions in human ESCs (hESCs) that a) oppose pluripotency and b) protect the stem cell genome in response to DNA damage and stress signaling. In mouse ESCs, these roles are believed to coincide, as p53 promotes differentiation in response to DNA damage, but this is unexplored in hESCs. To determine the biological roles of p53, specifically in hESCs, we mapped genome-wide chromatin interactions of p53 by chromatin immunoprecipitation and massively parallel tag sequencing (ChIP-Seq), and did so under three VIdifferent conditions of hESC status: pluripotency, differentiation-initiated and DNA-damage-induced. ChIP-Seq showed that p53 is enriched at distinct, induction-specific gene loci during each of these different conditions. Microarray gene expression analysis and functional annotation of the distinct p53-target genes revealed that p53 regulates specific genes encoding developmental regulators, which are expressed in differentiation-initiated but not DNA- damaged hESCs. We further discovered that, in response to differentiation signaling, p53 binds regions of chromatin that are repressed but also poised for rapid activation by core pluripotency factors OCT4 and NANOG in pluripotent hESCs. In response to DNA damage, genes associated with migration and motility are targeted by p53; whereas, the prime targets of p53 in control of cell death are conserved for p53 regulation in both differentiation and DNA damage. Our genome-wide profiling and bioinformatics analyses show that p53 occupies a special set of developmental regulatory genes during early differentiation of hESCs and functions in an induction-specific manner. In conclusion, our research unveiled previously unknown functions of p53 in ESC biology, which augments our understanding of one of the most deregulated proteins in human cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lamins are intermediate filament proteins of type V constituting a nuclear lamina or filamentous meshwork which lines the nucleoplasmic side of the inner nuclear membrane. This protein mesh provides a supporting scaffold for the nuclear envelope and tethers interphase chromosome to the nuclear periphery. Mutations of mainly A-type lamins are found to be causative for at least 11 human diseases collectively termed as laminopathies majority of which are characterised by aberrant nuclei with altered structural rigidity, deformability and poor mechanotransduction behaviour. But the investigation of viscoelastic behavior of lamin A continues to elude the field. In order to address this problem, we hereby present the very first report on viscoelastic properties of wild type human lamin A and some of its mutants linked with Dilated cardiomyopathy (DCM) using quantitative rheological measurements. We observed a dramatic strain-softening effect on lamin A network as an outcome of the strain amplitude sweep measurements which could arise from the large compliance of the quasi-cross-links in the network or that of the lamin A rods. In addition, the drastic stiffening of the differential elastic moduli on superposition of rotational and oscillatory shear stress reflect the increase in the stiffness of the laterally associated lamin A rods. These findings present a preliminary insight into distinct biomechanical properties of wild type lamin A protein and its mutants which in turn revealed interesting differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human papillomavirus type 16 proteins E6 and E7 have been shown to cause centrosome amplification and lagging chromosomes during mitosis. These abnormalities during mitosis can result in missegregation of the chromosomes, leading to chromosomal instability. Genomic instability is thought to be an essential part of the conversion of a normal cell to a cancer cell. We now show that E6 and E7 together cause polyploidy in primary human keratinocytes soon after these genes are introduced into the cells. Polyploidy seems to result from a spindle checkpoint failure arising from abrogation of the normal functions of p53 and retinoblastoma family members by E6 and E7, respectively. In addition, E6 and E7 cause deregulation of cellular genes such as Plk1, Aurora-A, cdk1, and Nek2, which are known to control the G2-M-phase transition and the ordered progression through mitosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β-Site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of Aβ peptides, proposed to drive the pathological changes found in Alzheimer’s disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (β-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulated BACE1 gene expression in a cell-based assay. This study aimed to analyze RTN3 and PPIL2 mRNA levels in four brain regions from individuals with AD and controls. BACE1 mRNA had been previously quantified in the samples, as had glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), to track changing cell populations in the tissue. mRNA levels in the human post mortem brain tissue were assayed using quantitative real-time polymerase chain reaction (qPCR) and qbasePLUS, employing validated stably expressed reference genes. No differences in RTN3 or PPIL2 mRNA levels were found in individuals with AD, compared to controls. Both RTN3 and PPIL2 mRNA levels correlated significantly with BACE1 mRNA and all three showed similar disease stage-dependent changes with respect to NSE and GFAP. These findings indicated that the in vitro data demonstrating an effect of PPIL2 on BACE1 expression have functional relevance in vivo. Further research into BACE1-interacting proteins could provide a fruitful approach to the modulation of this protease and consequently Aβ production.