980 resultados para problem complexity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classic group recommender systems focus on providing suggestions for a fixed group of people. Our work tries to give an inside look at design- ing a new recommender system that is capable of making suggestions for a sequence of activities, dividing people in subgroups, in order to boost over- all group satisfaction. However, this idea increases problem complexity in more dimensions and creates great challenge to the algorithm’s performance. To understand the e↵ectiveness, due to the enhanced complexity and pre- cise problem solving, we implemented an experimental system from data collected from a variety of web services concerning the city of Paris. The sys- tem recommends activities to a group of users from two di↵erent approaches: Local Search and Constraint Programming. The general results show that the number of subgroups can significantly influence the Constraint Program- ming Approaches’s computational time and e�cacy. Generally, Local Search can find results much quicker than Constraint Programming. Over a lengthy period of time, Local Search performs better than Constraint Programming, with similar final results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present algorithms which work on pairs of 0,1- matrices which multiply again a matrix of zero and one entries. When applied over a pair, the algorithms change the number of non-zero entries present in the matrices, meanwhile their product remains unchanged. We establish the conditions under which the number of 1s decreases. We recursively define as well pairs of matrices which product is a specific matrix and such that by applying on them these algorithms, we minimize the total number of non-zero entries present in both matrices. These matrices may be interpreted as solutions for a well known information retrieval problem, and in this case the number of 1 entries represent the complexity of the retrieve and information update operations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

В постановочном плане рассмотрены вопросы введения понятия «пространство развития», виды возможных изменений системы, структура и механизмы развития. Рассмотрены типологии индикаторов развития, роль информационной компоненты и понятия качества.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water-alternating-gas (WAG) is an enhanced oil recovery method combining the improved macroscopic sweep of water flooding with the improved microscopic displacement of gas injection. The optimal design of the WAG parameters is usually based on numerical reservoir simulation via trial and error, limited by the reservoir engineer’s availability. Employing optimisation techniques can guide the simulation runs and reduce the number of function evaluations. In this study, robust evolutionary algorithms are utilized to optimise hydrocarbon WAG performance in the E-segment of the Norne field. The first objective function is selected to be the net present value (NPV) and two global semi-random search strategies, a genetic algorithm (GA) and particle swarm optimisation (PSO) are tested on different case studies with different numbers of controlling variables which are sampled from the set of water and gas injection rates, bottom-hole pressures of the oil production wells, cycle ratio, cycle time, the composition of the injected hydrocarbon gas (miscible/immiscible WAG) and the total WAG period. In progressive experiments, the number of decision-making variables is increased, increasing the problem complexity while potentially improving the efficacy of the WAG process. The second objective function is selected to be the incremental recovery factor (IRF) within a fixed total WAG simulation time and it is optimised using the same optimisation algorithms. The results from the two optimisation techniques are analyzed and their performance, convergence speed and the quality of the optimal solutions found by the algorithms in multiple trials are compared for each experiment. The distinctions between the optimal WAG parameters resulting from NPV and oil recovery optimisation are also examined. This is the first known work optimising over this complete set of WAG variables. The first use of PSO to optimise a WAG project at the field scale is also illustrated. Compared to the reference cases, the best overall values of the objective functions found by GA and PSO were 13.8% and 14.2% higher, respectively, if NPV is optimised over all the above variables, and 14.2% and 16.2% higher, respectively, if IRF is optimised.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Suppose G = (V, E) is a simple graph and k is a fixed positive integer. A subset D subset of V is a distance k-dominating set of G if for every u is an element of V. there exists a vertex v is an element of D such that d(G)(u, v) <= k, where d(G)(u, v) is the distance between u and v in G. A set D subset of V is a distance k-paired-dominating set of G if D is a distance k-dominating set and the induced subgraph GD] contains a perfect matching. Given a graph G = (V, E) and a fixed integer k > 0, the MIN DISTANCE k-PAIRED-DOM SET problem is to find a minimum cardinality distance k-paired-dominating set of G. In this paper, we show that the decision version of MIN DISTANCE k-PAIRED-DOM SET iS NP-complete for undirected path graphs. This strengthens the complexity of decision version Of MIN DISTANCE k-PAIRED-DOM SET problem in chordal graphs. We show that for a given graph G, unless NP subset of DTIME (n(0)((log) (log) (n)) MIN DISTANCE k-PAIRED-Dom SET problem cannot be approximated within a factor of (1 -epsilon ) In n for any epsilon > 0, where n is the number of vertices in G. We also show that MIN DISTANCE k-PAIRED-DOM SET problem is APX-complete for graphs with degree bounded by 3. On the positive side, we present a linear time algorithm to compute the minimum cardinality of a distance k-paired-dominating set of a strongly chordal graph G if a strong elimination ordering of G is provided. We show that for a given graph G, MIN DISTANCE k-PAIRED-DOM SET problem can be approximated with an approximation factor of 1 + In 2 + k . In(Delta(G)), where Delta(G) denotes the maximum degree of G. (C) 2012 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is twofold: to analyze the computational complexity of the cogeneration design problem; to present an expert system to solve the proposed problem, comparing such an approach with the traditional searching methods available.Design/methodology/approach - The complexity of the cogeneration problem is analyzed through the transformation of the well-known knapsack problem. Both problems are formulated as decision problems and it is proven that the cogeneration problem is np-complete. Thus, several searching approaches, such as population heuristics and dynamic programming, could be used to solve the problem. Alternatively, a knowledge-based approach is proposed by presenting an expert system and its knowledge representation scheme.Findings - The expert system is executed considering two case-studies. First, a cogeneration plant should meet power, steam, chilled water and hot water demands. The expert system presented two different solutions based on high complexity thermodynamic cycles. In the second case-study the plant should meet just power and steam demands. The system presents three different solutions, and one of them was never considered before by our consultant expert.Originality/value - The expert system approach is not a "blind" method, i.e. it generates solutions based on actual engineering knowledge instead of the searching strategies from traditional methods. It means that the system is able to explain its choices, making available the design rationale for each solution. This is the main advantage of the expert system approach over the traditional search methods. On the other hand, the expert system quite likely does not provide an actual optimal solution. All it can provide is one or more acceptable solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, rough set approach computing issues concerning reducts of decision tables have attracted the attention of many researchers. In this paper, we present the time complexity of an algorithm computing reducts of decision tables by relational database approach. Let DS = (U, C ∪ {d}) be a consistent decision table, we say that A ⊆ C is a relative reduct of DS if A contains a reduct of DS. Let s = be a relation schema on the attribute set C ∪ {d}, we say that A ⊆ C is a relative minimal set of the attribute d if A contains a minimal set of d. Let Qd be the family of all relative reducts of DS, and Pd be the family of all relative minimal sets of the attribute d on s. We prove that the problem whether Qd ⊆ Pd is co-NP-complete. However, the problem whether Pd ⊆ Qd is in P .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generalize the classical notion of Vapnik–Chernovenkis (VC) dimension to ordinal VC-dimension, in the context of logical learning paradigms. Logical learning paradigms encompass the numerical learning paradigms commonly studied in Inductive Inference. A logical learning paradigm is defined as a set W of structures over some vocabulary, and a set D of first-order formulas that represent data. The sets of models of ϕ in W, where ϕ varies over D, generate a natural topology W over W. We show that if D is closed under boolean operators, then the notion of ordinal VC-dimension offers a perfect characterization for the problem of predicting the truth of the members of D in a member of W, with an ordinal bound on the number of mistakes. This shows that the notion of VC-dimension has a natural interpretation in Inductive Inference, when cast into a logical setting. We also study the relationships between predictive complexity, selective complexity—a variation on predictive complexity—and mind change complexity. The assumptions that D is closed under boolean operators and that W is compact often play a crucial role to establish connections between these concepts. We then consider a computable setting with effective versions of the complexity measures, and show that the equivalence between ordinal VC-dimension and predictive complexity fails. More precisely, we prove that the effective ordinal VC-dimension of a paradigm can be defined when all other effective notions of complexity are undefined. On a better note, when W is compact, all effective notions of complexity are defined, though they are not related as in the noncomputable version of the framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1960s, numerous studies on problem solving have revealed the complexity of the domain and the difficulty in translating research findings into practice. The literature suggests that the impact of problem solving research on the mathematics curriculum has been limited. Furthermore, our accumulation of knowledge on the teaching of problem solving is lagging. In this first discussion paper we initially present a sketch of 50 years of research on mathematical problem solving. We then consider some factors that have held back problem solving research over the past decades and offer some directions for how we might advance the field. We stress the urgent need to take into account the nature of problem solving in various arenas of today’s world and to accordingly modernize our perspectives on the teaching and learning of problem solving and of mathematical content through problem solving. Substantive theory development is also long overdue—we show how new perspectives on the development of problem solving expertise can contribute to theory development in guiding the design of worthwhile learning activities. In particular, we explore a models and modeling perspective as an alternative to existing views on problem solving.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Research is beginning to provide an indication of the co-occurring substance abuse and mental health needs for the driving under the influence (DUI) population. This study aimed to examine the extent of such psychiatric problems among a large sample size of DUI offenders entering treatment in Texas. Methods This is a study of 36,373 past year DUI clients and 308,714 non-past year DUI clients admitted to Texas treatment programs between 2005 and 2008. Data were obtained from the State's administrative dataset. Results Analysis indicated that non-past year DUI clients were more likely to present with more severe illicit substance use problems, while past year DUI clients were more likely to have a primary problem with alcohol. Nevertheless, a cannabis use problem was also found to be significantly associated with DUI recidivism in the last year. In regards to mental health status, a major finding was that depression was the most common psychiatric condition reported by DUI clients, including those with more than one DUI offence in the past year. This cohort also reported elevated levels of Bipolar Disorder compared to the general population, and such a diagnosis was also associated with an increased likelihood of not completing treatment. Additionally, female clients were more likely to be diagnosed with mental health problems than males, as well as more likely to be placed on medications at admission and more likely to have problems with methamphetamine, cocaine, and opiates. Conclusions DUI offenders are at an increased risk of experiencing comorbid psychiatric disorders, and thus, corresponding treatment programs need to cater for a range of mental health concerns that are likely to affect recidivism rates.