912 resultados para printed circuit boards
Resumo:
Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 µm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.
Resumo:
This manual provides a description of the laboratory and a step-by-step outline of the manufacturing techniques employed at Sandia Corporation, Livermore Laboratory (SCLL), in the fabrication of the etched circuit boards.
Resumo:
We reported here a novel technique for laser high speed drillings on Printed Circuit Boards (PCBs). A CNC solid laser based system is developed to drill through and blind vias as an alternative to mechanical drilling. The system employs an Acousto-Optic Q-switched Nd: YAG laser, a computer control system and an X-Y moving table which can handle up to 400 x 400 mm PCB. With a special designed cavity the laser system works in a pulsed operation in order to generate pulses with width down to 0.5 mu s and maximum peak power over 10kW at 10k repetition rate. Delivered by an improved optical beam transforming system, the focused laser beam can drill hobs including blind vias on PCBs with diameter in the range of 0.1 - 0.4 mm and at up to 300 - 500 vias per second (depending on the construction of PCBs). By means of a CNC X-Y moving system, laser pulses with pulse-to-pulse superior repeatability can be fired at desired location on a PCBs with high accuracy. This alternative technology for drilling through or blind vias on PCBs or PWBs (printed wiring boards) will obviously enhance the capability to printed boards manufacturing.
Resumo:
The deployment of OECBs (opto-electrical circuit boards) is expected to make a significant impact in the telecomm switches arena within the next five years. This will create optical backplanes with high speed point-to-point optical interconnects. The crucial aspect in the manufacturing process of the optical backplane is the successful coupling between VCSEL (vertical cavity surface emitting laser) device and embedded waveguide in the OECB. The results from a thermo-mechanical analysis are being used in a purely optical model, which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the modelling are being investigated using DOE analysis to identify packaging parameters that minimise misalignment. This is achieved via a specialist optimisation software package. Results from the thermomechanical and optical models are discussed as are experimental results from the DOE.
Resumo:
Experimental results are presented to show how a planar circuit, printed on a laterally shielded dielectric waveguide, can induce and control the radiation from a leaky-mode. By studying the leaky-mode complex propagation constant, a desired radiation pattern can be synthesized, controlling the main radiation characteristics (pointing direction, beamwidth, sidelobes level) for a given frequency, This technique leads to very flexible and original leaky-wave antenna designs. The experiments show to be in very good agreement with the leaky-mode theory.
Resumo:
This paper proposes a substrate integrated waveguide
(SIW) cavity-based method that is compliant with
ground-signal–ground (GSG) probing technology for dielectric
characterization of printed circuit board materials at millimeter
wavelengths. This paper presents the theory necessary to retrieve
dielectric parameters from the resonant characteristics of SIW
cavities with particular attention placed on the coupling scheme
and means for obtaining the unloaded resonant frequency. Different
sets of samples are designed and measured to address the
influence of the manufacturing process on the method. Material
parameters are extracted at - and -band from measured data
with the effect of surface roughness of the circuit metallization
taken into account.
Resumo:
Modern wireless systems are expected to operate in multiple frequency bands and support diverse communications standards to provide the high volume and speed of data transmission. Today's major limitations of their performance are imposed by interference, spurious emission and noise generated by high-power carriers in antennas and passive components of the RF front-end. Passive Intermodulation (PIM), which causes the combinatorial frequency generation in the operational bands, presents a primary challenge to signal integrity, system efficacy and data throughput. © 2013 IEEE.
Resumo:
Mode of access: Internet.
Resumo:
"October 21, 1963"
Resumo:
Originally published as the author's thesis (M.S.)--University of Illinois at Urbana-Champaign, 1970.
Resumo:
Issued also as thesis (M.S.) University of Illinois.
Resumo:
The reliability of the printed circuit board assembly under dynamic environments, such as those found onboard airplanes, ships and land vehicles is receiving more attention. This research analyses the dynamic characteristics of the printed circuit board (PCB) supported by edge retainers and plug-in connectors. By modelling the wedge retainer and connector as providing simply supported boundary condition with appropriate rotational spring stiffnesses along their respective edges with the aid of finite element codes, accurate natural frequencies for the board against experimental natural frequencies are obtained. For a PCB supported by two opposite wedge retainers and a plug-in connector and with its remaining edge free of any restraint, it is found that these real supports behave somewhere between the simply supported and clamped boundary conditions and provide a percentage fixity of 39.5% more than the classical simply supported case. By using an eigensensitivity method, the rotational stiffnesses representing the boundary supports of the PCB can be updated effectively and is capable of representing the dynamics of the PCB accurately. The result shows that the percentage error in the fundamental frequency of the PCB finite element model is substantially reduced from 22.3% to 1.3%. The procedure demonstrated the effectiveness of using only the vibration test frequencies as reference data when the mode shapes of the original untuned model are almost identical to the referenced modes/experimental data. When using only modal frequencies in model improvement, the analysis is very much simplified. Furthermore, the time taken to obtain the experimental data will be substantially reduced as the experimental mode shapes are not required.In addition, this thesis advocates a relatively simple method in determining the support locations for maximising the fundamental frequency of vibrating structures. The technique is simple and does not require any optimisation or sequential search algorithm in the analysis. The key to the procedure is to position the necessary supports at positions so as to eliminate the lower modes from the original configuration. This is accomplished by introducing point supports along the nodal lines of the highest possible mode from the original configuration, so that all the other lower modes are eliminated by the introduction of the new or extra supports to the structure. It also proposes inspecting the average driving point residues along the nodal lines of vibrating plates to find the optimal locations of the supports. Numerical examples are provided to demonstrate its validity. By applying to the PCB supported on its three sides by two wedge retainers and a connector, it is found that a single point constraint that would yield maximum fundamental frequency is located at the mid-point of the nodal line, namely, node 39. This point support has the effect of increasing the structure's fundamental frequency from 68.4 Hz to 146.9 Hz, or 115% higher.