72 resultados para praziquantel
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
"Alternatives for the Treatment of Schistosomiasis: Physico-Chemical Characterization of an Inclusion Complex Between Praziquantel and Hydroxypropyl-beta-Cyclodextrin". Praziquantel (PZQ) is the drug of choice commonly used for the treatment of shistosomiasis. However, it has low aqueous solubility, which could limit its bioavailability in the body. To circumvent these features, an inclusion complex with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was prepared. Thus, the objective of this work was to prepare and characterize the PZQ/HP-beta-CD inclusion complex. Morphological, spectroscopic, and calorimetric analysis showed the first signs of the guest/host interaction. The complexation kinetic analysis was used to determine the kinetic constant and, besides that, it was possible to establish the time consumed to reach equilibrium. Using the solubility isotherm, it was observed that the interaction with HP-beta-CD increased 2.4 fold the aqueous solubility of plain PZQ. In vitro cytotoxicity tests, using fibroblast cells, evidenced no toxicity for these cells at the concentrations tested. These results demonstrated that there is a potential use of PZQ in formulations with HP-beta-CD.
Resumo:
Polymeric nanoparticles have received great attention as potential controlled drug delivery systems. Biodegradable polymers has been extensively used in the development of these drug carriers, and the polyesters such as polylactic acid, polyglycolic acid and their copolymers as poly-lactide-co- glycolide are the most used, considering its biocompatibility and biodegradability. Thermal analysis techniques have been used for pharmaceutical substances for more than 30 years and are routine methods for screening drug-excipient interactions. The aim of this work is to use thermal analysis to characterize PLGA nanoparticles containing a hydrophobic drug, praziquantel. The results show that the drug is in an amorphous state or in disordered crystalline phase of molecular dispersion in the PLGA polymeric matrix and that the microencapsulation process did not interfere with the chemical structure of the polymer, mantaining the structural drug integrity.
Resumo:
A specific and sensitive high-performance liquid chromatographic method was developed for the assay of praziquantel in raw materials and tablets. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay in the wavelenght selected. The method validation yielded good results and included the range, linearity, precision, accuracy, specificity and recovery.
Resumo:
Mansonian schistosomiasis is caused by an intravascular digenetic trematode Schistosoma mansoni. Praziquantel (PZQ) and oxamniquine (OXA) are the drugs of choice for the treatment of this disease. However, both drugs are subject to some limitations in their action and cases of tolerance and resistance have been reported. Moreover, tolerance and resistance cases have been reported. For this reason, there is an urgent need for research on new alternatives aimed at improving the action of existing drugs, such as the incorporation of these drugs into liposomes. In this study, the efficiency of action of liposome- encapsulated praziquantel (lip.PZQ) on oviposition by S. mansoni, strain BH, was assessed in Mus musculus mices (SPF Swiss mice). Four PZQ and lip.PZQ doses (47; 60; 250 e 300mg/kg) were tested. Some mice were treated 30 days post-infection and others after 45 days. The oogram analyses showed that the most effective lip.PZQ treatment was 300mg/kg dose given on the 45th day post infection, which reduced the number of S. mansoni eggs per gram of tissue.
Resumo:
Praziquantel (PZQ) is the drug of choice commonly used for the treatment of shistosomiasis. However, it has low aqueous solubility, which could limit its bioavailability in the body. To circumvent these features, an inclusion complex with hydroxypropyl-beta- cyclodextrin (HP-β-CD) was prepared. Thus, the objective of this work was to prepare and characterize the PZQ/HP-β-CD inclusion complex. Morphological, spectroscopic, and calorimetric analysis showed the first signs of the guest/host interaction. The complexation kinetic analysis was used to determine the kinetic constant and, besides that, it was possible to establish the time consumed to reach equilibrium. Using the solubility isotherm, it was observed that the interaction with HP-β-CD increased 2.4 fold the aqueous solubility of plain PZQ. In vitro cytotoxicity tests, using fibroblast cells, evidenced no toxicity for these cells at the concentrations tested. These results demonstrated that there is a potential use of PZQ in formulations with HP-β-CD.
Resumo:
Purpose: To develop and characterize solid dispersions of praziquantel (PZQ) with sodium starch glycolate (SSG) for enhanced drug solubility. Methods: PZQ solid dispersion (SD) was prepared using co-precipitation method by solvent evaporation. The ratios of PZQ to SSG were 2:1, 1:1, 1:2, 1:3 (w/w). PZQ solubility was evaluated in purified water, and PZQ dissolution test was carried out in 0.1N HCl. Structural characterization of the dispersions was accomplished by x-ray diffraction (XRD) and infrared spectroscopy (FTIR) while the external morphology of the SDs, SSG and PZQ were studied by scanning electron microscopy (SEM). Mucoadhesion properties of the SD (1:3) and SSG, on mucin disks were examined using texture profile analysis. Results: The highest solubility was obtained with 1:3 solid dispersion, with PZQ solubility of 97.31 %, which is 3.65-fold greater than the solubility of pure PZQ and physical misture (PM, 1:3). XRD results indicate a reduction in PZQ crystallinity while infrared spectra showed that the functional groups of PZQ and SSG were preserved. SEM showed that the physical structure of PZQ was modified from crystalline to amorphous. The amount of PZQ in PM and SD (1:3) that dissolved in 60 min was 70 and 88 %, respectively, and these values increased to 76 and 96 %, respectively. The solid dispersion reduced the mucoadhesive property of the glycolate. Conclusion: Solid dispersion formulation using SSG is a good alternative approach for increasing the dissolution rate of PZQ. © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved.
Resumo:
Currently, schistosomiasis mansoni is treated clinically with praziquantel (PZQ). Nevertheless, cases of tolerance and resistance to this drug have been reported, creating the need to develop new drugs or to improve existing drugs. Considering the small number of new drugs against Schistosoma mansoni, the design of nanotechnology-based drug delivery systems is an important strategy in combating this disease. The aim of this study was to evaluate the activity of PZQ containing liposome (lip.PZQ) on S. mansoni, BH strain. Mice were treated orally with different concentrations of PZQ and lip.PZQ 30 and 45 days following infection. The number of worms, recovered by perfusion of the hepatic portal system, and the number of eggs found in the intestine and liver were analysed. Parasite egg counts were also performed. The most active formulation for all parameters was 300. mg/kg of lip.PZQ, since as it decreased the total number of worms by 68.8%, the number of eggs in the intestine by 79%, and the number of hepatic granulomas by 98.4% compared to untreated controls. In addition, this concentration decreased egg counts by 55.5%. The improved efficacy of the treatment with lip.PZQ, especially when administered 45 days following infection, compared with the positive-control group (untreated) and the groups that received free PZQ, can be explained by greater bioavailability in the host organism; the preferred target of lip.PZQ is the liver, and lip.PZQ is better absorbed by the tegument of S. mansoni, which has an affinity for phospholipids. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)