964 resultados para polymer-biopolymer interaction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel ampholytic terpolymer of N-vinylformamide (NVF), vinylamine (VAm) and sodium acrylate (NA) with low cationic proportion was obtained by hydrolyzing copolymer of NVF and NA (PNVFNA). Solution properties of the polymer were investigated by methods of turbidity and viscosity experiment. The effect of sodium dodecyl sulfate (SDS) on solution viscosity was also investigated. The results showed that the turbidity curves were bimodal, and pH 3.0 was determined as the isoelectric point (IEP).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new photoluminescent heterobimetallic Zn(II)-Ag(I) cyano-bridged coordination polymer, [Ag5Zn2(tren)(2)(CN)(9)] (tren = tris(2-aminoethyl)amine) (1), has been synthesized and structurally characterized. It features rare linear pentameric unit of dicyanoargentate(I) ions assembled by d(10)-d(10) interaction as building blocks. Solid state emission spectrum of I shows strong ultraviolet luminescence with emission peak in the range of 376 nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chain-length dependence of the Flory-Huggins (FH) interaction parameter is introduced into the FH lattice theory for polydisperse polymer-blend systems. The spinodals are calculated for the model polymer blends with different chain lengths and distributions. It is found that all the related variables r(n), r(w), r(z), and chain-length distribution, have effects on the spinodals for polydisperse polymer blends.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three comb polymers(CP) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were prepared from methyl vinyl ether/maleic anhydride alternating copolymer. Homogeneous amorphous polymer electrolytes were made from CP and LiCF3SO3 or LiClO4 by solvent-casting method, and their conductivities were measured as a function of temperature and salt concentration. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation. The conductivity maximum appears at lower salt concentration when CP has longer side chains. XPS was used to study the cation-polymer interaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A statistical thermodynamics theory of polydisperse polymer mixtures with strong interaction between dissimilar components based on a lattice fluid model is formulated. Expressions for the free energy, equation of state, phase stability and spinodal for a polydisperse, binary polymer mixture with strong interaction are derived.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laboratory studies were conducted to evaluate the interaction between bare and polymer-coated magnetic nanoparticles (MNPs) with various environmentally relevant carrying solutions including natural oceanic seawater with and without addition of algal exopolymeric substances (EPS). The MNPs were coated with three different stabilising agents, namely gum Arabic (GA-MNP), dextran (D-MNP) and carboxymethyl-dextran (CMD-MNP). The colloidal stability of the suspensions was evaluated over 48 h and we demonstrated that: (i) hydrodynamic diameters increased over time regardless of carrying solution for all MNPs except the GA-coated ones; however, the relative changes were carrying solution- and coat-dependent; (ii) polydispersity indexes of the freshly suspended MNPs are below 0.5 for all coated MNPs, unlike the much higher values obtained for the uncoated MNPs; (iii) freshly prepared MNP suspensions (both coated and uncoated) in Milli-Q (MQ) water show high colloidal stability as indicated by zeta-potential values below -30 mV, which however decrease in absolute value within 48 h for all MNPs regardless of carrying solution; (iv) EPS seems to "stabilise" the GA-coated and the CMD-coated MNPs, but not the uncoated or the D-coated MNPs, which form larger aggregates within 48 h; (v) despite this aggregation, iron (Fe)-leaching from MNPs is sustained over 48 h, but remained within the range of 3-9% of the total iron-content of the initially added MNPs regardless of suspension media and capping agent. The environmental implications of our findings and biotechnological applicability of MNPs are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conjugated polymers have attracted considerable attention in the last few decades due to their potential for optoelectronic applications. A key step that needs optimisation is charge carrier separation following photoexcitation. To understand better the dynamics of the exciton prior to charge separation, we have performed simulations of the formation and dynamics of localised excitations in single conjugated polymer strands. We use a nonadiabatic molecular dynamics method which allows for the coupled evolution of the nuclear degrees of freedom and of multiconfigurational electronic wavefunctions. We show the relaxation of electron-hole pairs to form excitons and oppositely charged polaron pairs and discuss the modifications to the relaxation process predicted by the inclusion of the Coulomb interaction between the carriers. The issue of charge photogeneration in conjugated polymers in dilute solution is also addressed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3600404]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The stability of ternary blends of two immiscible homopolymers and a block copolymer compatiblizer depends crucially on the effective interaction between the copolymermonolayers that form between the unlike homopolymer domains. Here, the interaction is calculated for blends involving A and B homopolymers of equal size with ABABdiblock copolymers of symmetric composition using both self-consistent field theory (SCFT) and strong-segregation theory (SST). If the homopolymers are larger than the copolymer molecules, an attractive interaction is predicted which would destroy the blend. This conclusion coupled with considerations regarding the elastic properties of the monolayer suggests that the optimum size of the homopolymer molecules is about 80% that of the copolymer molecule. A detailed examination of the theory demonstrates that the attraction results from the configurational entropy loss of the homopolymer molecules trapped between the copolymermonolayers. We conclude by suggesting how the monolayers can be altered in order to suppress this attraction and thus improve compatiblization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An increase of the reports involving mimetic systems has been observed. Briefly, these systems use biological phospholipids to exploit specific interactions between membrane-models and drugs. Here, the Layer-by-Layer (LbL) and Langmuir techniques were used to investigate the interaction between cardiolipin (CLP-negative phospholipid) and a cationic-like drug methylene blue (MB). Supported by a cationic polyelectrolyte (PAH), LbL films containing PAH/(CLP + MB) and PAH/(CLP + MB + AgNP) were grown up to 14 bilayers. The optical microscopy analysis revealed a decrease of the CLP vesicle sizes in the presence of MB as a possible consequence of the MB action onto the mechanical properties of the CLP membrane. From FTIR spectra, changes mainly related to peak position and band intensity and shape were observed in the spectra from PAH/CLP when in the presence of MB. The latter supports that the interactions between the phosphate and amine charged groups from CLP and PAH, respectively, established during the LbL film fabrication, besides the CLP hydrocarbon environment, are influenced by the presence of MB. Using the micro-Raman technique, a chemical mapping was build based on MB spectrum by resonance Raman scattering (RRS) and surface-enhanced resonance Raman scattering (SERRS). The later phenomenon was activated by Ag nanoparticles (AgNPs) trapped within the LbL film allowing collecting spectra for a single bilayer of PAH/(CLP + MB + AgNP). A rough estimation showed a SERRS amplification of 10(3) in comparison to RRS spectra. As a complementary approach, Langmuir films of CLP in the presence of co-spread MB were investigated through surface pressure vs mean molecular area (pi-A) isotherms. The results showed that for concentrations of MB below 100 mol%, the drug is expelled to water subphase for high values of surface pressure (condensed phase). For concentration at 100% and higher, the MB keeps bound to CLP floating monolayer. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fundamental aim in our investigation of the interaction of a polymer film with a nanoparticle is the extraction of information on the dynamics of the liquid using a single tracking particle. In this work two theoretical methods were used: one passive, where the motion of the particle measures the dynamics of the liquid, one active, where perturbations in the system are introduced through the particle. In the first part of this investigation a thin polymeric film on a substrate is studied using molecular dynamics simulations. The polymer is modeled via a 'bead spring' model. The particle is spheric and non structured and is able to interact with the monomers via a Lennard Jones potential. The system is micro-canonical and simulations were performed for average temperatures between the glass transition temperature of the film and its dewetting temperature. It is shown that the stability of the nanoparticle on the polymer film in the absence of gravity depends strongly on the form of the chosen interaction potential between nanoparticle and polymer. The relative position of the tracking particle to the liquid vapor interface of the polymer film shows the glass transition of the latter. The velocity correlation function and the mean square displacement of the particle has shown that it is caged when the temperature is close to the glass transition temperature. The analysis of the dynamics at long times shows the coupling of the nanoparticle to the center of mass of the polymer chains. The use of the Stokes-Einstein formula, which relates the diffusion coefficient to the viscosity, permits to use the nanoparticle as a probe for the determination of the bulk viscosity of the melt, the so called 'microrheology'. It is shown that for low frequencies the result obtained using microrheology coincides with the results of the Rouse model applied to the polymer dynamics. In the second part of this investigation the equations of Linear Hydrodynamics are solved for a nanoparticle oscillating above the film. It is shown that compressible liquids have mechanical response to external perturbations induced with the nanoparticle. These solutions show strong velocity and pressure profiles of the liquid near the interface, as well as a mechanical response of the liquid-vapor interface. The results obtained with this calculations can be employed for the interpretation of experimental results of non contact AFM microscopy