1000 resultados para plant nematodes
Resumo:
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities.
Resumo:
Three concentrations of Xenorhabdus nematophila and Xenorhabdus spp., (4x10(5,) 4x10(6,) 4x10(7) cells/ml) were evaluated in the laboratory and in pot experiments to test their antagonistic effects on Fusarium oxysporum f.sp., lycopersici. All concentrations effectively inhibited its growth on agar plates. In soil under greenhouse conditions treatments with each bacterium at 4x10(7) cells/ml reduced the disease incidence of tomato by up to 40.38 and 47.54% respectively and there were significant increases of plant biomass by 198 and 211% respectively. The rhizosphere population of Fusarium oxysporum f.sp., lycopersici was reduced by 97%. The Xenorhabdus spp., was comparatively more effective than X. nematophila.
Resumo:
Initial applications of 10(4) spores g(-1) of Pasteuria penetrans, and dried neem cake and leaves at 3 and 2% w:w, respectively, were applied to soil in pots. Juveniles of Meloidogyne javanica were added immediately to the pots (500, 5,000 or 10,000) before planting 6-week-old tomato seedlings. The tomatoes were sampled after 64 days; subsequently a second crop was grown for 59 days and a third crop for 67 days without further applications of P. penetrans and neem. There was significantly less root-galling in the P. penetrans combined with neem cake treatment at the end of the third crop and this treatment also had the greatest effect on the growth of the tomato plants. At the end of the third crop, 30% of the females were infected with P. penetrans in those treatments where spores had been applied at the start of the experiment. The effects of neem leaves and neem cake on the nematode population did not persist through the crop sequences but the potential for combining the amendments with a biological control agent such as P. penetrans is worthy of further evaluation.
Resumo:
Neem leaves, neem cake (a by-product left after the extraction of oil from neem seed) and a commercially refined product aza (azadirachtin) extracted from seed were evaluated. Aqueous extracts of crude neem formulations used as a seedling dip treatment significantly reduced the number of females and egg masses in roots whereas the refined one did not. A split-root technique was used to demonstrate the translocation of active compounds within a plant and their subsequent effect on the development of nematodes. When applied to the root portion all formulations significantly reduced the number of egg masses and eggs per egg mass. Whereas on the untreated root portion, neem cake at 3% w/w and aza at 0.1% w/w significantly reduced the number of egg masses as compared with neem leaves at 3% w/w, aza at 0.05% and control. All the neern formulations significantly reduced the number of eggs per egg mass on' the untreated root portion. The effect of neem leaves and cake on the development of root-knot nematodes was tested at 2, 4, 6, 8, and 16 weeks after their application to soil. Even after 16 weeks all the treatments significantly reduced the galling index and number of egg masses but their effectiveness declined over time. After storing neem leaves, cake and aza for 8 months under ambient conditions the efficacy of neem leaves and aza, against root-knot nematodes, remained stable whereas that of cake declined. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In order to identify the effect of burrowing nematodes on the shoots (pseudostem and leaves) of banana plants and to determine whether or not shoot characteristics are associated with plant resistance to nematodes two experiments were conducted in controlled conditions within polytunnels. The banana plants were harvested on three occasions for the measurement of root morphology and biomass. Varieties differed in their resistance to nematodes from resistant (Yg Km5, FHIA 17, FHIA 03) and partly resistant (FHIA 01, FHIA 25) to not resistant (FHIA 23, Williams). Nematodes reduced total plant dry weight at the first harvest in Experiment 1 and by an average of 8.8% in Experiment 2, but did not affect leaf area in either experiment. The ratio of above-ground Weight to total plant weight was reduced from 75% to 72% in nematode-infected plants compared with the control plants for all varieties tested in Experiment 1, but was only reduced in FHIA 25 and FHIA 23 in Experiment 2. Varieties differed in above-ground growth. The FHIA varieties had greater shoot weights and leaf area than YgKm5 and Williams. Overall, resistance to nematodes was associated with the partitioning of a greater proportion of biomass to the roots than to above-ground parts.
Resumo:
The use of natural plant anthelmintics was suggested as a possible alternative control of gastrointestinal nematodes (GIN) in ruminants. Direct anthelmintic effects of tannin-containing plants have already been shown in sheep and goat GIN. These anthelmintic properties are mainly associated with condensed tannins. In the present study, we evaluated possible in vitro effects of three tannin-containing plants against bovine GIN. Effects of Onobrychis viciifolia, Lotus pedunculatus and Lotus corniculatus condensed tannin (CT) extracts on Cooperia oncophora and Ostertagia ostertagi were determined by a larval feeding inhibition assay (LFIA) and a larval exsheathment assay (LEA). In the LFIA, all three plant extracts significantly inhibited larval feeding behaviour of both C. oncophora and O. ostertagi first stage larvae in a dose-dependent manner. The L. pedunculatus extract, based on EC50 (effective concentration for 50% inhibition), was the most effective against both nematodes, followed by O. viciifolia and L. corniculatus. The effect of CT extracts upon larval feeding behaviour correlates with CT content and procyanidin/prodelphidin ratio. Larval exsheathment of C. oncophora and O. ostertagi L3 larvae (third stage larvae) was also affected by CT extracts from all three plants. In both in vitro assays, extracts with added polyvinylpolypyrrolidone, an inhibitor of tannins, generated almost the same values as the negative control; this confirms the role of CT in the anthelmintic effect of these plant extracts. Our results, therefore, indicated that tannin-containing plants could act against cattle nematodes.
Resumo:
Root-knot nematodes (Meloidogyne spp.) are the most significant plant-parasitic nematodes that damage many crops all over the world. The free-living second stage juvenile (J2) is the infective stage that enters plants. The J2s move in the soil water films to reach the root zone. The bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes, is cosmopolitan, frequently encountered in many climates and environmental conditions and is considered promising for the control of Meloidogyne spp. The infection potential of P. penetrans to nematodes is well studied but not the attachment effects on the movement of root-knot nematode juveniles, image analysis techniques were used to characterize movement of individual juveniles with or without P. penetrans spores attached to their cuticles. Methods include the study of nematode locomotion based on (a) the centroid body point, (b) shape analysis and (c) image stack analysis. All methods proved that individual J2s without P. penetrans spores attached have a sinusoidal forward movement compared with those encumbered with spores. From these separate analytical studies of encumbered and unencumbered nematodes, it was possible to demonstrate how the presence of P. penetrans spores on a nematode body disrupted the normal movement of the nematode.
Resumo:
Ecosystems consist of aboveground and belowground subsystems and the structure of their communities is known to change with distance. However, most of this knowledge originates from visible, aboveground components, whereas relatively little is known about how soil community structure varies with distance and if this variability depends on the group of organisms considered. In the present study, we analyzed 30 grasslands from three neighboring chalk hill ridges in southern UK to determine the effect of geographic distance (1e198 km) on the similarity of bacterial communities and of nematode communities in the soil. We found that for both groups, community similarity decayed with distance and that this spatial pattern was not related to changes either in plant community composition or soil chemistry. Site history may have contributed to the observed pattern in the case of nematodes, since the distance effect depended on the presence of different nematode taxa at one of the hill ridges. On the other hand, site-related differences in bacterial community composition alone could not explain the spatial turnover, suggesting that other factors, such as biotic gradients and local dispersal processes that we did not include in our analysis, may be involved in the observed pattern. We conclude that, independently of the variety of causal factors that may be involved, the decay in similarity with geographic distance is a characteristic feature of both communities of soil bacteria and nematodes.
Resumo:
Sainfoin (Onobrychis viciifolia) is a condensed tannin (CT)-containing legume and has anthelmintic potential against gastrointestinal nematodes of ruminants. This study investigated in vitro effects of acetone/water extracts and derived CT fractions from different types of sainfoin (i.e. accessions) against larvae of Cooperia oncophora and Ostertagia ostertagi by applying the larval feeding inhibition assay (LFIA). Seven sainfoin accessions were extracted and tested with L1 larvae at 10 and 40 μg extract/ml. In addition, CT in extracts from 4 accessions were fractionated according to polymer size and tested by LFIA at two concentrations (2 and 10 μg CT fraction/ml). All sainfoin extracts caused significant inhibition of L1-feeding of both C. oncophora and O. ostertagi with varying intensity compared to the control (phosphate buffered saline). For both nematode species the in vitro effect was positively correlated with CT content in the extracts, but not with any of the structural CT parameters. In contrast, the 16 CT fractions revealed significant correlations between in vitro effect and CT content, polymer size (mean degree of polymerisation, mDP) and monomeric composition (prodelphinidin percentage, % PD). These differences between crude extracts and purified fractions may stem from the fact that extracts contain complex CT mixtures, which may mask and thus suppress CT structural effects. This study provides the first indication that, apart from CT and % PD content, polymer size also contributes to anthelmintic activity of CTs. The results, therefore, suggest that the inter-accession variability in CT content and composition needs to be taken into account in future plant breeding programmes which seek to enhance the anthelmintic properties of sainfoin
Resumo:
Bacterial soft rot is a globally significant plant disease that causes major losses in the production of many popular crops, such as potato. Little is known about the dispersal and ecology of soft-rot enterobacteria, and few animals have been identified as vectors for these pathogens. This study investigates whether soil-living and bacterial-feeding nematodes could act as vectors for the dispersal of soft-rot enterobacteria to plants. Soft-rot enterobacteria associated with nematodes were quantified and visualized through bacterial enumeration, GFP-tagging, and confocal and electron scanning microscopy. Soft-rot enterobacteria were able to withstand nematode grazing, colonize the gut of Caenorhabditis elegans and subsequently disperse to plant material while remaining virulent. Two nematode species were also isolated from a rotten potato sample obtained from a potato storage facility in Finland. Furthermore, one of these isolates (Pristionchus sp. FIN-1) was shown to be able to disperse soft-rot enterobacteria to plant material. The interaction of nematodes and soft-rot enterobacteria seems to be more mutualistic rather than pathogenic, but more research is needed to explain how soft-rot enterobacteria remain viable inside nematodes.
Resumo:
Interactions between host nutrition and feeding behaviour are central to understanding the pathophysiological consequences of infections of the digestive tract with parasitic nematodes. The manipulation of host nutrition provides useful options to control gastrointestinal nematodes as a component of an integrated strategy. Focused mainly on the Hameonchus contortus infection model in small ruminants, this chapter (i) illustrates the relationship between quantitative (macro- and micro-nutrients) and qualitative (plant secondary metabolites) aspects of host nutrition and nematode infection, and (ii) shows how basic studies aimed at addressing some generic questions can help provide solutions, despite the considerable diversity of epidemiological situations and breeding systems.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The control of parasitic diseases in small ruminants is mainly done with the use of synthetic anthelmintics. However, incorrect and indiscriminate use of these products has caused the emergence of parasite resistance. Plants with anthelmintic activity are used in folk veterinary medicine, but it is necessary to investigate and scientifically validate low-cost phytotherapeutic alternatives for future use to control gastrointestinal nematodes in small ruminants by family farmers. Thus, the aim of this study was to evaluate the in vitro anthelmintic effect of plant extracts from Melia azedarach and Trichilia claussenii by the egg hatch test (EHT) and larval development test (LDT) against sheep gastrointestinal nematodes. The hexane extract of M. azedarach fruits was extracted through cold percolation and the methanol extract of T. claussenii leaves was obtained by extraction at room temperature in solvents in order of increasing polarity. The efficacy results were analyzed using the Probit program of SAS. The M. azedarach extract showed a LC50 of 572.2 mu g/mL and LC99 of 1137.8 mu g/mL in the EHT, and LC50 of 0.7 mu g/mL and LC99 of 60.81 mu g/mL in the LDT. In turn, the T. claussenii extract presented a LC50 of 263.8 mu g/mL and LC99 of 522.5 mu g/mL in the EHTand LC50 of 1.11 mu g/mL and LC99 of 26.4 mu g/mL in the LDT. Comparing the extracts of the species from the Meliaceae family, T. claussenii showed greater anti-parasite potential in vitro than M. azedarach. However, studies on the isolated compounds, toxicity and administration forms to animals are also needed to validate low-cost alternative herbal remedies for use to control gastrointestinal nematodes by family farmers. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Although tannin-rich forages are known to increase protein uptake and to reduce gastrointestinal nematode infections in grazing ruminants, most published research involves forages with condensed tannins (CT), while published literature lacks information on the anthelmintic capacity, nutritional benefits, and antioxidant capacity of alternative forages containing hydrolyzable tannins (HT). We evaluated the anthelmintic activity and the antioxidant capacity of plant extracts containing either mostly CT, mostly HT, or both CT and HT. Extracts were prepared with 70% acetone, lyophilized, redissolved to doses ranging from 1.0mg/mL to 25mg/mL, and tested against adult Caenorhabditis elegans as a test model. The extract concentrations that killed 50% (LC50) or 90% (LC90) of the nematodes in 24h were determined and compared to the veterinary anthelmintic levamisole (8mg/mL). Extracts were quantified for CT by the acid butanol assay, for HT (based on gallic acid and ellagic acid) by high-performance liquid chromatography (HPLC) and total phenolics, and for their antioxidant activity by the oxygen radical absorbance capacity (ORAC) assay. Extracts with mostly CT were Lespedeza cuneata, Salix X sepulcralis, and Robinia pseudoacacia. Extracts rich in HT were Acer rubrum, Rosa multiflora, and Quercus alba, while Rhus typhina had both HT and CT. The extracts with the lowest LC50 and LC90 concentrations, respectively, in the C. elegans assay were Q. alba (0.75 and 1.06mg/mL), R. typhina collected in 2007 (0.65 and 2.74mg/mL), A. rubrum (1.03 and 5.54mg/mL), and R. multiflora (2.14 and 8.70mg/mL). At the doses of 20 and 25mg/mL, HT-rich, or both CT- and HT-rich, extracts were significantly more lethal to adult C. elegans than extracts containing only CT. All extracts were high in antioxidant capacity, with ORAC values ranging from 1800μmoles to 4651μmoles of trolox equivalents/g, but ORAC did not correlate with anthelmintic activity. The total phenolics test had a positive and highly significant (r=0.826, p≤0.01) correlation with total hydrolyzable tannins. Plants used in this research are naturalized to the Appalachian edaphoclimatic conditions, but occur in temperate climate areas worldwide. They represent a rich, renewable, and unexplored source of tannins and antioxidants for grazing ruminants, whereas conventional CT-rich forages, such as L. cuneata, may be hard to establish and adapt to areas with temperate climate. Due to their high in vitro anthelmintic activity, antioxidant capacity, and their adaptability to non-arable lands, Q. alba, R. typhina, A. rubrum, and R. multiflora have a high potential to improve the health of grazing animals and must have their anthelmintic effects confirmed in vivo in both sheep and goats. © 2012.