87 resultados para pili
Resumo:
The Gram-negative bacterial pathogen Neisseria gonorrhoeae is naturally competent for transformation with species-related DNA. We show here that two phase-variable pilus-associated proteins, the major pilus subunit (pilin, or PilE) and PilC, a factor known to function in the assembly and adherence of gonococcal pili, are essential for transformation competence. The PilE and PilC proteins are necessary for the conversion of linearized plasmid DNA carrying the Neisseria-specific DNA uptake signal into a DNase-resistant form. The biogenesis of typical pilus fibers is neither essential nor sufficient for this process. DNA uptake deficiency of defined piliated pilC1,2 double mutants can be complemented by expression of a cloned pilC2 gene in trans. The PilC defect can also be restored by the addition of purified PilC protein, or better, pili containing PilC protein, to the mutant gonococci. Our data suggest that the two phase-variable Pil proteins act on the bacterial cell surface and cooperate in DNA recognition and/or outer membrane translocation.
Resumo:
Three mutants with Tn5-B21 insertion in tonB3 (PA0406) of Pseudomonas aeruginosa exhibited defective twitching motility and reduced assembly of extracellular pili. These defects could be complemented with wild-type tonB3.
Resumo:
Bazex - Dupre - Christol syndrome is a rare genodermatosis with cancer predisposition, characterized by follicular atrophoderma, multiple milia, congenital hypotrichosis, hypohidrosis and basal cell malformations that include nevoid basal cell carcinomas of early onset. We present two patients with this syndrome, a 1-year-old boy with diffuse scalp and eyebrows alopecia, milia papules on the face, ears, trunk, and limbs. Hypohidrosis was observed on his trunk and head. His 16-year-old mother had identical changes since childhood, with hair fragility, and multiple atrophic ""ice pick"" follicular depressions on the dorsa of her hands. She also had a basal cell carcinoma on her face. Microscopic examination of hairs from the mother revealed abnormalities such as diameter irregularities, broken shafts, trichorrexis nodosa and pili bifurcatti. Pili bifurcatti is an uncommon hair shaft dysplasia that has not before been observed in Bazex - Dupre - Christol syndrome.
Resumo:
Vfr, a homolog of Escherichia coli cyclic AMP (cAMP) receptor protein, has been shown to regulate quorum sensing, exotoxin A production, and regA transcription in Pseudomonas aeruginosa. We identified a twitching motility-defective mutant that carries a transposon insertion in vfr and confirmed that vfr is required for twitching motility by construction of an independent allelic deletion-replacement mutant of vfr that exhibited the same phenotype, as well as by the restoration of normal twitching motility by complementation of these mutants with wild-type vfr. Vfr-null mutants exhibited severely reduced twitching motility with barely detectable levels of type IV pili, as well as loss of elastase production and altered pyocyanin production. We also identified reduced-twitching variants of quorum-sensing mutants (PAK lasl::Tc) with a spontaneous deletion in vfr (S. A. Beatson, C. B. Whitchurch, A. B. T. Semmler, and J. S. Mattick, J. Bacteriol., 184:3598-3604,2002), the net result of which was the loss of five residues (EQERS) from the putative cAMP-binding pocket or Vfr. This allele (VfrDeltaEQERS) was capable of restoring elastase and pyocyanin production to wild-type levels in vfr-null mutants but not their defects in twitching motility. Furthermore, structural analysis of Vfr and VfrDeltaEQERS in relation to E. coli CRP suggests that Vfr is capable of binding both cAMP and cyclic GMP whereas VfrDeltaEQERS is only capable of responding to cAMP. We suggest that Vfr controls twitching motility and quorum sensing via independent pathways in response to these different signals, bound by the same cyclic nucleotide monophosphate-binding pocket.
Resumo:
In recent years there has been a dramatic increase in reports of glycosylation of proteins in various Gram-negative systems including Neisseria meningitidis, Neisseria gonorrhoeae, Campylobacter jejuni, Pseudomonas aeruginosa, Escherichia coli, Caulobacter crescentus, Aeromonas caviae and Helicobacter pylori. Although this growing list contains many important pathogens (reviewed by Benz and Schmidt [Mol. Microbiol. 45 (2002) 267-276]) and the glycosylations are found on proteins important in pathogenesis such as pili, adhesins and flagella the precise role(s) of the glycosylation of these proteins remains to be determined. Furthermore, the details of the glycosylation biosynthetic process have not been determined in any of these systems. The definition of the precise role of glycosylation and the mechanism of biosynthesis will be facilitated by a detailed understanding of the genes involved. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis. of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pgIB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pgIB2 polymorphisms were not found in strain C311#3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311#3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating truncation of the trisaccharide structure. Antisera specific for the C311#3 trisaccharide failed to react with pilin from these pglE and pglF mutants. GC-MS analysis of the sugar composition of the pglE mutant showed a reduction in galactose compared with C311#3 wild type. Analysis of amino acid sequence homologies has suggested specific roles for pglE and pglF in the biosynthesis of the trisaccharide structure. Further, we present evidence that pglE, which contains heptanucleotide repeats, is responsible for the phase variation between trisaccharide and disaccharide structures in strain C311#3 and other strains. We also present evidence that pglG, pglH and pgIB2 are potentially phase variable.
Resumo:
Background. Streptococcus gallolyticus is a causative agent of infective endocarditis associated with colon cancer. Genome sequence of strain UCN34 revealed the existence of 3 pilus loci (pil1, pil2, and pil3). Pili are long filamentous structures playing a key role as adhesive organelles in many pathogens. The pil1 locus encodes 2 LPXTG proteins (Gallo2178 and Gallo2179) and 1 sortase C (Gallo2177). Gallo2179 displaying a functional collagen-binding domain was referred to as the adhesin, whereas Gallo2178 was designated as the major pilin. Methods. S. gallolyticus UCN34, Pil1(+) and Pil1(-), expressing various levels of pil1, and recombinant Lactococcus lactis strains, constitutively expressing pil1, were studied. Polyclonal antibodies raised against the putative pilin subunits Gallo2178 and Gallo2179 were used in immunoblotting and immunogold electron microscopy. The role of pil1 was tested in a rat model of endocarditis. Results. We showed that the pil1 locus (gallo2179-78-77) forms an operon differentially expressed among S. gallolyticus strains. Short pilus appendages were identified both on the surface of S. gallolyticus UCN34 and recombinant L. lactis-expressing pil1. We demonstrated that Pil1 pilus is involved in binding to collagen, biofilm formation, and virulence in experimental endocarditis. Conclusions. This study identifies Pil1 as the first virulence factor characterized in S. gallolyticus.
Resumo:
Sphingomonas wittichii RW1 is a dibenzofuran and dibenzodioxin-degrading bacterium with potentially interesting properties for bioaugmentation of contaminated sites. In order to understand the capacity of the microorganism to survive in the environment we used a genome-wide transposon scanning approach. RW1 transposon libraries were generated with around 22 000 independent insertions. Libraries were grown for an average of 50 generations (five successive passages in batch liquid medium) with salicylate as sole carbon and energy source in presence or absence of salt stress at -1.5 MPa. Alternatively, libraries were grown in sand with salicylate, at 50% water holding capacity, for 4 and 10 days (equivalent to 7 generations). Library DNA was recovered from the different growth conditions and scanned by ultrahigh throughput sequencing for the positions and numbers of inserted transposed kanamycin resistance gene. No transposon reads were recovered in 579 genes (10% of all annotated genes in the RW1 genome) in any of the libraries, suggesting those to be essential for survival under the used conditions. Libraries recovered from sand differed strongly from those incubated in liquid batch medium. In particular, important functions for survival of cells in sand at the short term concerned nutrient scavenging, energy metabolism and motility. In contrast to this, fatty acid metabolism and oxidative stress response were essential for longer term survival of cells in sand. Comparison to transcriptome data suggested important functions in sand for flagellar movement, pili synthesis, trehalose and polysaccharide synthesis and putative cell surface antigen proteins. Interestingly, a variety of genes were also identified, interruption of which cause significant increase in fitness during growth on salicylate. One of these was an Lrp family transcription regulator and mutants in this gene covered more than 90% of the total library after 50 generations of growth on salicylate. Our results demonstrate the power of genome-wide transposon scanning approaches for analysis of complex traits.
Resumo:
Alpha-D-mannopyranosides are potent FimH antagonists, which inhibit the adhesion of Escherichia coli to highly mannosylated uroplakin Ia on the urothelium and therefore offer an efficient therapeutic opportunity for the treatment and prevention of urinary tract infection. For the evaluation of the therapeutic potential of FimH antagonists, their effect on the disaggregation of E. coli from Candida albicans and guinea pig erythrocytes (GPE) was studied. The mannose-specific binding of E. coli to yeast cells and erythrocytes is mediated by type 1 pili and can be monitored by aggregometry. Maximal aggregation of C. albicans or GPE to E. coli is reached after 600 s. Then the FimH antagonist was added and disaggregation determined by light transmission over a period of 1400 s. A FimH-deleted mutant of E. coli, which does not induce any aggregation, was used in a control experiment. The activities of FimH antagonists are expressed as IC(50)s, the half maximal inhibitory concentration of the disaggregation potential. n-Heptyl alpha-D-mannopyranoside (1) was used as a reference compound and exhibits an IC(50) of 77.14 microM , whereas methyl alpha-D-mannopyranoside (2) does not lead to any disaggregation at concentrations up to 800 microM. o-Chloro-p-[N-(2-ethoxy-3,4-dioxocyclobut-1-enyl)amino]phenyl alpha-D-mannopyranoside (3) shows a 90-fold and 2-chloro-4-nitrophenyl alpha-D-mannopyranoside (4) a 6-fold increased affinity compared to 1. Finally, 4-nitrophenyl alpha-D-mannopyranoside (5) exhibits an activity similar to 1. As negative control, D-galactose (6) was used. The standardized aggregation assay generates concentration-dependent, reproducible data allowing the evaluation of FimH antagonists according to their potency to inhibit E. coli adherence and can therefore be employed to select candidates for experimental and clinical studies for treatment and prevention of urinary tract infections.
Resumo:
Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.
Resumo:
Escherichia coli isolates from 24 sick psittacine birds were serogrouped and investigated for the presence of genes encoding the following virulence factors: attaching and effacing (eae), enteropathogenic E. coli EAF plasmid (EAF), pili associated with pyelonephritis (pap), S fimbriae (sfa), afimbrial adhesin (afa), capsule K1 (neu), curli (crl, csgA), temperature-sensitive hemagglutinin (tsh), enteroaggregative heat-stable enterotoxin-1 (astA), heat-stable enterotoxin -1 heat labile (LT) and heat stable (STa and STb) enterotoxins, Shiga-like toxins (stx1 and stx2), cytotoxic necrotizing factor 1 (cnf1), haemolysin (hly), aerobactin production (iuc) and serum resistance (iss). The results showed that the isolates belonged to 12 serogroups: O7; O15; O21; O23; O54; O64; O76; O84; O88; O128; O152 and O166. The virulence genes found were: crl in all isolates, pap in 10 isolates, iss in seven isolates, csgA in five isolates, iuc and tsh in three isolates and eae in two isolates. The combination of virulence genes revealed 11 different genotypic patterns. All strains were negative for genes encoding for EAF, EAEC, K1, sfa, afa, hly, cnf, LT, STa, STb, stx1 and stx2. Our findings showed that some E. coli isolated from psittacine birds present the same virulence factors as avian pathogenic E. coli (APEC), uropathogenic E. coli (UPEC) and Enteropathogenic E. coli (EPEC) pathotypes.
Resumo:
Birds of the Cracidae family (curassows, guans, and chachalacas) are endemic of the Neotropics and 50 species are currently classified. Brazil has 22 species, seven of which are considered threatened. The Alagoas Curassow (Pauxi mitu) species is considered extinct in the wild; but about 120 birds are alive in captivity. Conservation of this species depends entirely on correct management. Health reports of both wildlife and captive curassows are rare. In this study the presence of Escherichia coli was evaluated in 23 healthy Alagoas Curassows from two private breeding centres. E. coli was isolated from cloacal swabs, and the presence of genes encoding cytotoxic necrotising factor 1 (cnf1), alpha-haemolysin (hly), aerobactin (iuc), serum resistance (iss) and the following adhesions: S fimbriae (sfa), pili associated with pyelonephritis (pap) and temperature-sensitive haemagglutinin (tsh) were investigated. E. coli was isolated from 78.3% (18/23) of the birds, and the percentage of curassows colonized by E. coli was similar between the two facilities. From the 22 E. coli isolates, 15 (68.2%) were positive for at least one virulence factor by PCR, and the most frequently found gene was iss (50%). No curassows had clinical signs of disease. Nevertheless, the presence of some E. coli strains may be a concern to the wildlife in captivity. Additional health surveillance studies are essential to guarantee successful conservation programmes for threatened cracids in Brazil.
Resumo:
Surface proteinaceous fibrils, termed fimbriae, were first identified on gram negative bacteria in the 1940s. Fungal fimbriae, discovered some 25 years later, are found on members of all fungal classes. In the present study, polyclonal antiserum raised against the fimbrial proteins of U. vio/acea were used in order to identify antigenically related proteins from Coprinus cinereus and Schizophy//um commune. Two polypeptides with molecular masses of 37 and 39 kDa from C. cinereus were observed and confirm earlier results. A single previously unidentified 50 kDa polypeptide in S. commune crossreacted with the antiserum. The 50 kDa protein was found to consist of 3 isoforms with isoelectric points ranging from 5.6 to 5.8. A fimbrial cDNA derived from U. vio/acea was used to identify DNA restriction fragments from C. cinereus and S. commune showing homology to the fimbrial transcript of U. vio/acea. Heterologous hybridization with this cDNA was used in order to screen a C. cinereus genomic DNA library. A single clone, A2-3A, with a 14 kbp insert showed strong homology to the pfim3-1 cDNA. The region of homology, a 700 bp Xba I fragment, was subcloned into pUG19. This plasmid was refered to as pXX8. DNA sequence determinations of pXX8 and adjacent fragments from A2-3A suggested that the cloned DNA was a portion of the rONA repeat encoding the small subunit rRNA. DNA sequence analysis of pfim3-1 yielded an incomplete open reading frame. The predicted amino acid sequence codes for a 206 amino acid, 22 kDa polypeptide which contains a domain similar to a transmembrane domain from rat leukocyte antigen, GDS3. As well, an untranslated 576 nucleotide domain showed 81 % homology to pXX8 and 830/0 homology to the 188 rRNA sequence of Ustilago maydis. This sequence was found adjacent to a region of adenine-thymine base pairs presumed to represent the polyadenylation sequence of the fimbrial transcript. The size and extent of homology is sufficient to account for the hybridization of pfim3-1 to rDNA. It is suggested that this domain represents a completely novel regulatory domain within eukaryotes that may enable the observed rapid regeneration of fimbriae in U. violacea.
Resumo:
F1651, les pili Pap et l’antigène CS31A associé aux antigènes de surface K88 sont tout trois des membres de la famille de type P des facteurs d’adhérence jouant un rôle prépondérant lors de l’établissement d’une maladie causée par des souches Escherichia coli pathogènes, en particulier des souches d’E. coli pathogènes extra-intestinales (ExPEC, Extra-intestinal pathogenic E. coli). Leur expression est sous le contrôle d’un mécanisme de régulation transcriptionnel dépendant de l’état de méthylation de l’ADN, résultant dans l’existence de deux populations définies, l’une exprimant l’adhésine (population ON) et l’autre ne l’exprimant pas (population OFF). Malgré de fortes identités de séquences, ces trois systèmes diffèrent l’un de l’autre, principalement par le pourcentage de cellules ON rencontrées. Ainsi, quand CS31A est systématiquement orienté vers un état considéré comme OFF, F1651 présente une phase ON particulièrement élevée et Pap montre deux états OFF et ON bien distincts, selon le phénotype de départ. La protéine régulatrice sensible à la leucine (Lrp, Leucine-responsive regulatory protein) joue un rôle essentiel dans la réversibilité de ce phénomène épigénétique et il est supposé que les différences de séquences au niveau de la région régulatrice modifient la localisation à ces sites de fixation de Lrp; ce qui résulte, en final, aux différences de phase existant entre CS31A, F1651 et Pap.À l’aide de divers techniques parmi lesquelles l’utilisation de gènes rapporteurs, mutagénèses dirigées et d’analyse des interactions ADN-protéines in vitro, nous montrons dans ce présent projet que la phase OFF prédominante chez CS31A est principalement due à une faible interaction de Lrp avec la région distale de l’opéron clp, et que la présence d’un homologue du régulateur local PapI joue un rôle également clef dans la production de CS31A. Dans le cas de F1651, nous montrons dans cette étude que le taux élevé de cellules en phase ON est dû à une altération dans le maintien de Lrp sur les sites répresseurs 1-3. Ceci est dû à la présence de deux nucléotides spécifiques, situé de part et d’autre du site répresseur 1, qui défavorisent la fixation de Lrp sur ce site précis. Tout comme dans le cas de CS31A, la formation d’un complexe, activateur ou répresseur de la phase ON, dépend également de l’action de du régulatuer local FooI, qui favorise alors le déplacement de Lrp des sites répresseurs 1-3 vers les sites activateurs 4-6.