994 resultados para photovoltaic effects


Relevância:

60.00% 60.00%

Publicador:

Resumo:

High efficiency organic photovoltaic cells discussed in literature are normally restricted to devices fabricated on glass substrates. This is a consequence of the extreme brittleness and inflexibility of the commonly used transparent conductive oxide electrode, indium tin oxide (ITO). This shortcoming of ITO along with other concerns such as increasing scarcity of indium, migration of indium to organic layer, etc. makes it imperative to move away from ITO. Here we demonstrate a highly flexible Ag electrode that possesses low sheet resistances even in ultra-thin layers. It retains its conductivity under severe bending stresses where ITO fails completely. A P3HT:PCBM blend organic solar cell fabricated on this highly flexible electrode gives an efficiency of 2.3%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We initially look at the changing energy environment and how that can have a dramatic change on the potential of alternative energies, in particular those of organic photovoltaicvs (OPV) cells. In looking at OPV's we also address the aspects of where we are with the current art and why we may not be getting the best from our materials. In doing so, we propose the idea of changing how we build organic photovoltaics by addressing the best method to contain light within the devices. Our initial effort is in addressing how these microscale optical concentrators work in the form of optical fibers in terms of absorption. We have derived a mathematical method which takes account of the input angle of light to achieve optimum absorption. However, in doing so we also address the complex issue how the changing refractive indices in a multilayer device can alter how we input the light. We have found that by knowing the materials refractive index our model takes into account the incident plane, meridonal plane, cross sectional are and path length to ensure optical angular input. Secondly, we also address the practicalities of making such vertical structures the greater issue of changing light intensity incident on a solar cell and how that aspects alters how we view the performance of organic solar cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical transmittance and conductivity for thin metallic films, such as Au, are two inversely related and extremely important parameters for its application in organic photovoltaics as the front electrode. We report our findings on how these parameters have been optimized to attain maximum possible efficiencies by fabricating organic solar cells with thin Au film anodes of differing optical transmittances and consequently due to scaling at the nanolevel, varying electrical conductivities. There was an extraordinary improvement in the overall solar cell efficiency (to the order of 49%) when the Au thin film transmittance was increased from 38% to 54%. Surface morphologies of these thin films also have an effect on the critical parameters including, Voc, Jsc and FF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have prepared p-n junction organic photovoltaic cells using an all solution processing method with poly(3-hexylthiophene) (P3HT) as the donor and phenyl-C 61-butyric acid methyl ester (PCBM) as the acceptor. Interdigitated donor/acceptor interface morphology was observed in the device processed with the lowest boiling point solvent for PCBM used in this study. The influences of different solvents on donor/acceptor morphology and respective device performance were investigated simultaneously. The best device obtained had characteristically rough interface morphology with a peak to valley value ∼15 nm. The device displayed a power conversion efficiency of 1.78%, an open circuit voltage (V oc) 0.44 V, a short circuit current density (J sc) 9.4 mA/cm 2 and a fill factor 43%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction at the interface between a metal electrode and photoactive polymer is crucial for overall performance and stability of organic photovoltaics (OPVs). In this article, we report a comparative study of the stability of thin film Ag and indium tin oxide (ITO) as electrodes when used in conjunction with an interfacial PEDOT:PSS layer for P3HT:PCBM blend OPV devices. XPS measurements were taken for Ag and ITO/PEDOT:PSS layered samples with different exposure times to ambient conditions (∼25 °C, ∼50% relative humidity) to investigate the migration of Ag and In into the PEDOT:PSS layer. The change in efficiency of OPVs with a longer exposure time and degree of migration is explained by the analysis of XPS results. We propose the mechanism behind the interactions occurring at the interfaces. The efficiency of the ITO electrode OPVs continuously decreased to below 10% of the initial efficiency. However, the Ag devices displayed a slower degradation and maintained 50% of the initial efficiency for the same period of time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated transitions above and below band edge of GaNAs/GaAs and InGaNAs/GaAs single quantum wells (QWs) by photoluminescence (PL) as well as by absorption spectra via photovoltaic effects. The interband PL peak is observed to be dominant under high excitation intensity and at low temperature. The broad luminescence band below band edge due to the nitrogen-related potential fluctuations can be effectively suppressed by increasing indium incorporation into InGaNAs. In contrast to InGaNAs/GaAs QWs, the measured interband transition energy of GaNAs/GaAs QWs can be well fitted to the theoretical calculations if a type-II band lineup is assumed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a strong circular photogalvanic effect (CPGE) in ZnO epitaxial films under interband excitation. It is observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated transitions above and below band edge of GaNAs/GaAs and InGaNAs/GaAs single quantum wells (QWs) by photoluminescence (PL) as well as by absorption spectra via photovoltaic effects. The interband PL peak is observed to be dominant under high excitation intensity and at low temperature. The broad luminescence band below band edge due to the nitrogen-related potential fluctuations can be effectively suppressed by increasing indium incorporation into InGaNAs. In contrast to InGaNAs/GaAs QWs, the measured interband transition energy of GaNAs/GaAs QWs can be well fitted to the theoretical calculations if a type-II band lineup is assumed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical energy from photovoltaic panels (PV) has became an increasing viable alternative because of the great concern for environmental preservation and the possibility of the reduction of the conventional fuels, and this natural energy source is free, abundant and clean. In addition, Brazil is a privileged country because of the high levels of irradiation throughout its territory all over the year. Thus the exploitation of the energy from PV is one of the best alternatives to overcome the supply electrical energy issues. However, nowadays the energy conversion efficiency is low and the initial costs are high for these energy systems. Therefore, in order to increase the efficiency of these systems the extraction of the maximum power point (MPP) from PV is extremely necessary, and it is done using the maximum power point tracking (MPPT) techniques. The MPP of the PV varies non linearly with the environmental conditions and several MPPT techniques are available in literature, and this paper presents a careful comparison among the most usual techniques, doing meaningful comparisons with respect to the amount of energy extracted, PV voltage ripple, dynamic response and use of sensors, considering that the models are implemented via MatLab/Simulink®. © 2010 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the evaluation of different power electronic integrated converters suitable for photovoltaic applications, in order to reduce complexity and improve reliability. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. In this context, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. Power decoupling, MPPT and Tri-State modulations are also considered. Finally, simulation and experimental results are presented and compared for the analyzed topologies. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents evaluations among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic panel (PV) (Tracking Factor - TF) in relation to the available power, PV voltage ripple, dynamic response and use of sensors. Using MatLab/Simulink® and DSpace platforms, a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented and a contribution in the implementation of the IC algorithm is performed and called IC based on PI. Moreover, the dynamic response and the tracking factor are also evaluated using a Friendly User Interface, which is capable of online program power curves and compute the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a briefly review, some trends and perspectives in the field of Photovoltaic energy conversion, which is considered to be the most important renewable energy source in few years, in the coming decades. The power electronics plays a fundamental role in this process, developing systems each times more competitive, efficient, reliable, and also reducing costs and reducing the payback time. Some trends are visible, which are the use of Silicon Carbide devices in PV inverters, the use of integrated inverter structures, the integration of power converters into the PV module or the use of few PV series connection, the development of thinner and more efficient solar cells. Moreover, the discussion about the necessity of MPPT and anti-island schemes are presented, mainly considering the expected growth of grid-tied applications. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to present a modified Space Vector Modulation (SVM) suitable for Tri-state Three-phase inverters. A standard SVM algorithm and the Tri-state PWM (Pulse Width Modulation) are presented and their concept are mixed into the novel SVM. The proposed SVM is applied to a three-phase tri-state integrated Boost inverter, intended to Photovoltaic Energy Applications. The main features for this novel SVM are validated through simulations and also by experimental tests. The obtained results prove the feasibility of the proposal. © 2011 IEEE.