985 resultados para photo-thermal deformation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper the magnetic and magneto-optical properties of amorphous rare earth-transition metal (RE-TM) alloys as well as the magnetic coupling in the multi-layer thin films for high density optical data storage are presented. Using magnetic effect in scanning tunneling microscopy the clusters structure of amorphous RE-TM thin films has been observed and the perpendicular magnetic anisotropy in amorphous RE-TM thin films has been interpreted. Experimental results of quick phase transformation under short pulse laser irradiation of amorphous semiconductor and metallic alloy thin films for phase change optical recording are reported. A step-by-step phase transformation process through metastable states has been observed. The waveform of crystallization propagation in micro-size spot during laser recording in amorphous semiconductor thin films is characterized and quick recording and erasing mechanism for optical data storage with high performance are discussed. The nonlinear optical effects in amorphous alloy thin films have been studied. By photo-thermal effect or third order optical nonlinearity, the optical self-focusing is observed in amorphous mask thin films. The application of amorphous thin films with super-resolution near field structure for high-density optical data storage is performed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An InGaA1As multiquantum well (MQW) has been successfully overgrown on the absorptive InGaAsP corrugation for fabricating the 1.3 mu m gain coupled distributed feedback (DFB) lasers. The absorptive InGaAsP corrugation was efficaciously preserved during the overgrowth of the InGaA1As MQW active region. The absorptive InGaAsP corrugation has a relatively high intensity around the PL peak wavelength in comparison with that of the InGaA1As MQW. The fabricated DFB laser exhibited a side mode suppression ratio of 40 dB together with a high single-mode yield of 90%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ethanol with added water may be found during the process of assessing its physical and chemical properties. This addition can damage automotive vehicle engines and also may contribute to tax evasion. The present contribution describes a method based on a photothermal transparent transducer to determine the water content in ethanol. A chamber with a window of lithium tantalate coated with a thin layer of indium tin oxide was used, and a 1450-nm laser diode was employed as the excitation source. The results indicated a nearly linear response of the apparatus, as a function of the water content in water/ethanol solutions ranging from 0 to 100 (vol.%). The results for the dependency of the photothermal signal on the laser power and chopping frequency suggested that reliable results can be obtained using laser power and chopping rates above 100 mW and 10 Hz, respectively. The results reported here may be useful in the development of an alternative method that can provide real-time data on the water concentration in ethanol in a rapid, portable and unambiguous way, and that can be easily used in laboratory analyses or in gas stations. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study evaluated the effectiveness and the sensitivity of in-office tooth bleaching with the use of a hybrid photo-activation system composed by LEDs and lasers. 40 patients, both genders, aged 18 through 25 years, were randomly distributed into two treatment groups: group I, 35% hydrogen peroxide, with a total bleaching time of 135 min divided into three sessions, and group II, 35% hydrogen peroxide and photo-thermal catalysis by an LED-laser system (300 mW cm-2), for a total bleaching time of 72 min divided into three sessions. The treatment efficiency was measured by reflectance spectroscopy and sensitivity by a visual analog scale (VAS). The final luminosity value (ΔL), color variation (ΔE) and sensitivity (S) resulting from the treatments were analyzed by the generalized estimating equations method (GEEs), and Bonferroni post hoc multiple comparisons at 5% significance. The two groups presented similar colors (ΔE) and luminosities (ΔL) after treatment. Group I presented a greater sensitivity index (37.6 ± 5.9%) compared to group II (11.1 ± 3.3%), statistically significant at p < 0.05. The use of LED-laser hybrid light, as a catalyst of the bleaching agents, showed a significant decrease of provoked tooth sensitivity and a treatment time reduced by 53%, with the same aesthetic results as without a light source. © 2013 Astro Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Continuous and long-pulse lasers have been used for the forming of metal sheets in macroscopic mechanical applications. However, for the manufacturing of micro-electromechanical systems (MEMS), the use of ns laser pulses provides a suitable parameter matching over an important range of sheet components that, preserving the short interaction time scale required for the predominantly mechanical (shock) induction of deformation residual stresses, allows for the successful processing of components in a medium range of miniaturization without appreciable thermal deformation.. In the present paper, the physics of laser shock microforming and the influence of the different experimental parameters on the net bending angle are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84 +/- 40) ppm/cm and (127 +/- 24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model of far infrared (FIR) dielectric response of shallow impurity states in a semiconductor has been developed and is presented for the specific case of the shallow donor transitions in high purity epitaxial GaAs. The model is quite general, however, and should be applicable with slight modification, not only to shallow donors in other materials such as InP, but also to shallow acceptors and excitons. The effects of the enormous dielectric response of shallow donors on the FIR optical properties of reflectance, transmittance, and absorptance, and photoconductive response of high purity epitaxial GaAs films are predicted and compared with experimental photothermal ionization spectra. The model accounts for many of the peculiar features that are frequently observed in these spectra, one of which was the cause of erroneous donor identifications in the early doping experiments. The model also corrects some commonly held misconceptions concerning photo-thermal ionization peak widths and amplitudes and their relationships to donor and acceptor concentrations. These corrections are of particular relevance to the proper interpretation of photothermal ionization spectra in the study of impurity incorporation in high purity epitaxial material. The model also suggests that the technique of FIR reflectance, although it has not been widely employed, should be useful in the study of shallow impurities in semiconductors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exposure with above band gap light and thermal annealing at a temperature near to glass transition temperature, of thermally evaporated amorphous (As2S3)(0.87)Sb-0.13 thin films of 1 mu m thickness, were found to be accompanied by structural effects, which in turn, lead to changes in the optical properties. The optical properties of thin films induced by illumination and annealing were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photo darkening or photo bleaching was observed in the film depending upon the conditions of the light exposure or annealing. These changes of the optical properties are assigned to the change of homopolar bond densities. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A cationic superabsorbent polymer (SAP) was synthesized by carrying out the polymerization of 2-(methacryloyloxy)ethyl] trimethyl ammonium chloride) with N,N'-methylenebisacrylamide as the cross-linking agent. The SAP was subjected to degradation in dry and the equilibrium swollen state by thermo gravimetric analysis and exposure to ultraviolet radiation, respectively. The photodegradation was monitored by measuring changes in the swelling capacity and the dry weight of the SAP. The thermal degradation of the SAP occurred in three stages after the initial removal of moisture and the activation energies of the decomposition were determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Graphite-flake reinforced Cu47Ti34Zr11 Ni-8 bulk metallic glass matrix composite was fabricated by water-cooled copper mould cast. Most of the graphite flakes still keep unreacted and distribute uniformly in the amorphous matrix except that some reactive wetting occurs by the formation of TiC particles around the flakes. It reveals that the presence of graphite flakes does not affect the onset of the glass transition temperature, crystallization reaction and liquidus of the metallic glass. The resulting material shows obvious serrated flow and higher fracture strength under room temperature compressive load, comparing with the monolithic bulk metallic glass (BMG). Three types of interaction between the shear bands and graphite flakes, namely, shear band termination, shear bands branching and new shear bands formation near the graphite flakes can be observed by quasi-static uniaxial compression test and bonded interface technique through Vickers indentation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the field of fluid mechanics, free surface phenomena is one of the most important physical processes. In the present research work, the surface deformation and surface wave caused by temperature difference of sidewalls in a rectangular cavity have been investigated. The horizontal cross-section of the container is 52 mmx42 mm, and there is a silicon oil layer of height 3.5 mm in the experimental cavity. Temperature difference between the two side walls of the cavity is increased gradually, and the flow on the liquid layer will develop from stable convection to un-stable convection. An optical diagnostic system consisting of a modified Michelson interferometer and image processor has been developed for study of the surface deformation and surface wave of thermal capillary convection. The Fourier transformation method is used to interferometer fringe analysis. The quantitative results of surface deformation and surface wave have been calculated from a serial of the interference fringe patterns.The characters of surface deformation and surface wave have been obtained. They are related with temperature gradient and surface tension. Surface deformation is fluctuant with time, which shows the character of surface wave. The cycle period of the wave is 4.8 s, and the amplitudes are from 0 to 0.55 mu m. The phase of the wave near the cool side of the cavity is opposite and correlative to that near the hot side. The present experiment proves that the surface wave of thermal capillary convection exists on liquid free surface, and it is wrapped in surface deformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for the study of the kinetics of the thermal capillary convection. The capillary convection, surface deformation, surface wave and the velocity field in a rectangular cavity with different temperature's sidewalls have been investigated by optical interference method and PIV technique. In order to calculate the surface deformation from the interference fringe, Fourier transformation is used to grating analysis. The quantitative results of the surface deformation and surface wave have been calculated from the interference fringe pattern.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High resolution soft x-ray photoemission spectroscopy (SXPS) have been used to study the high temperature thermal stability of ultra-thin atomic layer deposited (ALD) HfO2 layers (∼1 nm) on sulphur passivated and hydrofluoric acid (HF) treated germanium surfaces. The interfacial oxides which are detected for both surface preparations following HfO2 deposition can be effectively removed by annealing upto 700 °C without any evidence of chemical interaction at the HfO2/Ge interface. The estimated valence and conduction band offsets for the HfO2/Ge abrupt interface indicated that effective barriers exist to inhibit carrier injection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal transport properties—thermal diffusivity, thermal conductivity and specific heat capacity—of potassium selenate crystal have been measured through the successive phase transitions, following the photo-pyroelectric thermal wave technique. The variation of thermal conductivity with temperature through the incommensurate (IC) phase of this crystal is measured. The enhancement in thermal conductivity in the IC phase is explained in terms of heat conduction by phase modes, and the maxima in thermal conductivity during transitions is due to enhancement in the phonon mean free path and the corresponding reduction in phonon scattering. The anisotropy in thermal conductivity and its variation with temperature are reported. The variation of the specific heat with temperature through the high temperature structural transition at 745 K is measured, following the differential scanning calorimetric method. By combining the results of photo-pyroelectric thermal wave methods and differential scanning calorimetry, the variation of the specific heat capacity with temperature through all the four phases of K2SeO4 is reported. The results are discussed in terms of phonon mode softening during transitions and phonon scattering by phase modes in the IC phase.