915 resultados para photo period
Resumo:
The purpose of this study was to evaluate the influence of different light sources and photo-activation methods on degree of conversion (DC%) and polymerization shrinkage (PS) of a nanocomposite resin (Filtek (TM) Supreme XT, 3M/ESPE). Two light-curing units (LCUs), one halogen-lamp (QTH) and one light-emitting-diode (LED), and two different photo-activation methods (continuous and gradual) were investigated in this study. The specimens were divided in four groups: group 1-power density (PD) of 570 mW/cm(2) for 20 s (QTH); group 2-PD 0 at 570 mW/cm(2) for 10 s + 10 s at 570 mW/cm(2) (QTH); group 3-PD 860 mW/cm(2) for 20 s (LED), and group 4-PD 125 mW/cm(2) for 10 s + 10 s at 860 mW/cm(2) (LED). A testing machine EMIC with rectangular steel bases (6 x 1 x 2 mm) was used to record the polymerization shrinkage forces (MPa) for a period that started with the photo-activation and ended after two minutes of measurement. For each group, ten repetitions (n = 40) were performed. For DC% measurements, five specimens (n = 20) for each group were made in a metallic mold (2 mm thickness and 4 mm diameter, ISO 4049) and them pulverized, pressed with bromide potassium (KBr) and analyzed with FT-IR spectroscopy. The data of PS were analyzed by Analysis of Variance (ANOVA) with Welch`s correction and Tamhane`s test. The PS means (MPa) were: 0.60 (G1); 0.47 (G2); 0.52 (G3) and 0.45 (G4), showing significant differences between two photo-activation methods, regardless of the light source used. The continuous method provided the highest values for PS. The data of DC% were analyzed by Analysis of Variance (ANOVA) and shows significant differences for QTH LCUs, regardless of the photo-activation method used. The QTH provided the lowest values for DC%. The gradual method provides lower polymerization contraction, either with halogen lamp or LED. Degree of conversion (%) for continuous or gradual photo-activation method was influenced by the LCUs. Thus, the presented results suggest that gradual method photo-activation with LED LCU would suffice to ensure adequate degree of conversion and minimum polymerization shrinkage.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Investigations of photo-induced structural transformations (PST) and related changes of optical parameters in amorphous chalcogenide layers were further developed towards the establishment of their dependence on the compositional modulation of the material at nanoscale-dimensions (similar to3-10 nm) and possible improvement of optical recording parameters as well. Besides the known amorphous-amorphous PST, photo-stimulated interdiffusion and crystallization in multilayer structures were found as a useful method for amplitude-phase optical relief formation. The last two types of PST were influenced by size restrictions and efficiently operated by the composition and by the modulation period of the layered nanocomposite. Experimental evidences were obtained in Se-, AsSe-, Se0.4Te0.6-containing layered or quasi zero-dimensional structures based on As2S3 or SiOx and MgF2 matrix. Comparison was made with As2S3- and GeS2-based multicomponent layers, containing Se, Te and Ga. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The red Fe2+-phenanthroline complex is the basis of a classical spectrophotometric method for determination of iron. Due to the toxicity of this complexing agent, direct disposal of the wastewaters generated in analytical laboratories is not environmentally safe. This work evaluates the use of the solar photo-Fenton process for the treatment of laboratory wastewaters containing phenanthroline. Firstly, the degradation of phenanthroline in water was evaluated at two concentration levels (0.1 and 0.01%, w/v) and the efficiencies of degradation using ferrioxalate (FeOx) and ferric nitrate were compared. The 0.01% w/v solution presented much higher mineralization, achieving 82% after 30 min of solar irradiation with both iron sources. The solar photo-Fenton treatment of laboratory wastewater containing, in addition to phenanthroline, other organic compounds such as herbicides and 4-chlorophenol, equivalent to 4500 mg L-1 total organic carbon (TOC) resulted in total degradation of phenanthroline and 25% TOC removal after 150 min, in the presence of either FeOx or ferric nitrate. A ratio of 1: 10 dilution of the residue increased mineralization in the presence of ferrioxalate, achieving 38% TOC removal after 120 min, while use of ferric nitrate resulted in only 6% mineralization over the same period. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background: Monitoring alcohol use is important in numerous situations. Direct ethanol metabolites, such as ethyl glucuronide (EtG), have been shown to be useful tools in detecting alcohol use and documenting abstinence. For very frequent or continuous control of abstinence, they lack practicability. Therefore, devices measuring ethanol itself might be of interest. This pilot study aims at elucidating the usability and accuracy of the cellular photo digital breathalyzer (CPDB) compared to self-reports in a naturalistic setting. Method: 12 social drinkers were included. Subjects used a CPDB 4 times daily, kept diaries of alcohol use and submitted urine for EtG testing over a period of 5 weeks. Results: In total, the 12 subjects reported 84 drinking episodes. 1,609 breath tests were performed and 55 urine EtG tests were collected. Of 84 drinking episodes, CPDB detected 98.8%. The compliance rate for breath testing was 96%. Of the 55 EtG tests submitted, 1 (1.8%) was positive. Conclusions: The data suggest that the CPDB device holds promise in detecting high, moderate, and low alcohol intake. It seems to have advantages compared to biomarkers and other Monitoring devices. The preference for CPDB by the participants might explain the high compliance. Further studies including comparison with biomarkers and transdermal devices are needed.
Resumo:
This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.
Resumo:
Floor plans and front and end elevations of Indian College drawn by H.R. Shurtleff in May 1934 based on research conducted by Shurtleff from the Harvard College Records and surveys of local period buildings. Shows likely configuration of Indian College with lodging for 20 students, studies, and the printing room which housed the printing press.
Resumo:
The phenology of 11 diverse accessions of wild mungbean was observed under natural and artificial photoperiod - temperature conditions, in order to examine whether genotypic differences might be attributed to adaptive responses to photo-thermal conditions. There was large variation in phenological response among accessions and across environments, much of which was due to differences in the duration of the pre-flowering phase. Accessions that flowered earlier tended to flower for longer, apart from 2 earlier flowering, inland Australian lines that were also earlier maturing. The patterns of response in time from sowing to flowering over environment were consistent with quantitative short-day photoperiodic adaptation, a conclusion supported by the effects of artificial day-length extension and by 'goodness of fit' of the observed responses to standard models relating rate of development to photoperiod and temperature. The fitted models indicated that rate of development towards flowering was hastened by warmer temperatures, and delayed by longer day lengths, with differential sensitivity between accessions to both factors. The models also suggested that photoperiod was more important for accessions collected closer to the equator, which were generally later flowering as a consequence. Conversely, temperature was relatively more important in lines from higher latitudes. Modelling also suggested that the period from first flowering to maturity was sensitive to photoperiod and temperature. Again, longer days appeared to prolong growth and delay maturity. However, cooler temperatures accelerated rather than slowed maturity, by suppressing further vegetative growth. The variation observed indicated that there is considerable scope for using the wild population to broaden the adaptation of cultivated mungbean. In particular, the unusual response of a late-flowering, photoperiod-insensitive accession warrants further study to establish whether the wild population contains a unique 'long juvenile' trait analogous to that being used for improving phenological adaptation in soybean.
Resumo:
The leaf growth, dry matter production, and seed yield of 11 wild mungbean ( Vigna radiata ssp. sublobata) accessions of diverse geographic origin were observed under natural and artificial photoperiod temperature conditions, to determine the extent to which genotypic differences could be attributed to adaptive responses to photo-thermal environment. Environments included serial sowings in the field in SE Queensland, complemented by artificial photoperiod extension and controlled-environment growth rooms. Photo-thermal environment influenced leaf growth, total dry matter production ( TDM), and seed yield directly, through effects of ( mainly cool) temperature on growth, and indirectly, through effects on phenology. In terms of direct effects, leaf production, leaf expansion, and leaf area were all sensitive to temperature, with implied base temperatures higher than usually observed in cultivated mungbean ( V. radiata ssp. radiata). Genotypic sensitivity to temperature varied systematically with accession provenance and appeared to be of adaptive significance. In terms of the indirect effects of photo-thermal environment, genotypic and environmental effects on TDM were positively related to changes in total growth duration, and harvest index was negatively related to the period from sowing to flowering, similar to cultivated mungbean. However, seed yield was positively related to the duration of reproductive growth, reflecting the indeterminate growth habit of the wild accessions. As a consequence, the wild accessions are more responsive to favourable environments than typically observed in cultivated mungbean, which is determinate in habit. It is suggested that the introduction of the indeterminate trait into mungbean from the wild subspecies would increase the responsiveness of mungbean to favourable environments, analogous to that of black gram ( V. mungo). Although the wild subspecies appeared more sensitive to cool temperature than cultivated mungbean, it may provide a source of tolerance to the warmer temperatures experienced during the wet season in the tropics.
Resumo:
The distinct behaviour of femtosecond laser inscribed long period gratings, with a non-uniform index perturbation within the optical fibre core, has been studied experimentally. The non-uniform laser-induced perturbation results in light coupling from the core mode to a greater number of cladding modes than is the case with their UV laser inscribed counterparts, and this is made evident from the surrounding refractive index (SRI) grating response. Femtosecond inscribed long period gratings are shown to simultaneously couple to multiple sets of cladding modes. A 400μm LPG is shown to result in attenuation peaks that have both blue and red wavelength shifts over a 1250nm to 1700nm wavelength range. This gives rise to SRI sensitivities far greater than anything achievable by monitoring a single attenuation peak. The maximum sensitivity produced by monitoring a single attenuation peak was 1106nm/RIU, whereas monitoring opposing wavelength shifts resulted in a significantly improved sensitivity of 1680nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
A long-period grating (LPG) was written into a progressive three-layered single-mode fiber that was embedded into a flexible platform as a curvature sensor. The spectral location and profile of the LPGs were unaltered after implantation in the platform. The curvature sensitivity was 3.747 nm m with a resolution of ± 1.1 × 10-2 m-1. The bend sensor is intended to be part of a respiratory monitoring system and was tested on a resuscitation training manikin. © 2003 society of Photo-Optical Instrumentation Engineers.
Apodisation of photo-induced waveguide gratings using double-exposure with complementary duty cycles
Resumo:
We present a novel apodisation scheme for photo-induced waveguide gratings. The apodisation is implemented with double exposures that have reversely varying duty cycles. We have successfully applied the proposed scheme to remove the sidelobes of long period gratings (LPGs). We also observed for the first time super strong sidelobes in LPGs when creating them with only a single varying-duty-cycle exposure. The strong sidelobes can be well explained with a Mach-Zehnder interference model.
Resumo:
A variety of iron compounds containing vinyl or thiol functional groups (used as photoactivators) have been synthesised and some of these were successfully bound to both polyethylene and polypropylene backbones during processing in the presence of peroxide and interlinking agent. Concentrates (masterbatches) of the photoactivators in PP and PE were prepared and the pro-oxidant effect of the diluted masterbatches in absence and presence of an antioxidant was evaluated. An antioxidant photoactivator (FeDNC ) was found to sensitise the photoactivity of pro-oxidants (Metone A / Metone M) whereas an antioxidant (ZnDNC) was found to stabilise the polymer (PP and PE) containing both of these combinations. It was observed that the lower concentration of FeDNC sensitises the stability of the polymer containing very small concentration of NiDNC whereas higher concentration of FeDNC stabilises the polymer (LDPE) containing same amount of NiDNC compared to FeDNC alone. The photostability of unstabilised PP containing FeAc could be varied by varying the concentration of ZnDEC. Both the induction period and the UV - life time of the polymer increased by increasing concentration of ZnDEC. It is suggested that ligand exchange reaction may take place between FeAc and ZnDNC. A polymer bound UV stabiliser (HAEB) and a thermal stabiliser (DBBA) were used with a non extractable photoactivator (FeAc) in PP. Small concentrations of the stabilisers (HAEB and DBBA) in combination with the photoactivator (FeAc) sensitise the polymer. The antioxidant present in commercial polymer (LDPE and PP) was found to be of a hindered phenol type, which was found to antagonise with ZnDNC when used in combination with the photoactivators.
Apodisation of photo-induced waveguide gratings using double-exposure with complementary duty cycles
Resumo:
We present a novel apodisation scheme for photo-induced waveguide gratings. The apodisation is implemented with double exposures that have reversely varying duty cycles. We have successfully applied the proposed scheme to remove the sidelobes of long period gratings (LPGs). We also observed for the first time super strong sidelobes in LPGs when creating them with only a single varying-duty-cycle exposure. The strong sidelobes can be well explained with a Mach-Zehnder interference model.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, d lambda/dR from similar to 7-nm m to similar to 9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%. (C) 2007 Society of Photo-Optical Instrumentation Engineers.