942 resultados para phosphorus adsorption isotherms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate characterization of the microporous structure in porous solids is of paramount importance for several applications such as energy and gas storage, nanoconfinement reactions, and so on. Among the different techniques for precise textural characterization, high-precision gas adsorption measurement of probe molecules at cryogenic temperatures (e.g., N2 at 77.4 K and Ar at 87.3 K) is the most widely used, after appropriate calibration of the sample holder with a probe gas, which does not experience physisorption processes. Although traditionally helium has been considered not to be adsorbed in porous solids at cryogenic temperatures, here we show that even at 77.4 K (high above its boiling temperature, 4 K) the use of He in the calibration step can give rise to erroneous interpretations when narrow micropores/constrictions are present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new approach accounting for the nonadditivity of attractive parts of solid-fluid and fluidfluid potentials to improve the quality of the description of nitrogen and argon adsorption isotherms on graphitized carbon black in the framework of non-local density functional theory. We show that the strong solid-fluid interaction in the first monolayer decreases the fluid-fluid interaction, which prevents the twodimensional phase transition to occur. This results in smoother isotherm, which agrees much better with experimental data. In the region of multi-layer coverage the conventional non-local density functional theory and grand canonical Monte Carlo simulations are known to over-predict the amount adsorbed against experimental isotherms. Accounting for the non-additivity factor decreases the solid-fluid interaction with the increase of intermolecular interactions in the dense adsorbed fluid, preventing the over-prediction of loading in the region of multi-layer adsorption. Such an improvement of the non-local density functional theory allows us to describe experimental nitrogen and argon isotherms on carbon black quite accurately with mean error of 2.5 to 5.8% instead of 17 to 26% in the conventional technique. With this approach, the local isotherms of model pores can be derived, and consequently a more reliab * le pore size distribution can be obtained. We illustrate this by applying our theory against nitrogen and argon isotherms on a number of activated carbons. The fitting between our model and the data is much better than the conventional NLDFT, suggesting the more reliable PSD obtained with our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A barrier to the domestication of the phosphorus (P) sensitive Australian species Caustis blakei (Cyperaceae) is the standard production systems used commercially which invariably result in problems associated either with P deficiency or P toxicity. This paper reports on the growth responses of Caustis blakei cv. M63 to applications of fertiliser P as either monocalcium phosphate (MCP) or granulated Guano Gold (R) rock phosphate (RP) in two soils with different capacities to adsorb P. The Caustis M63 plants grown in the two soils did not show P toxicity symptoms when fertilised with RP, but shoot dry weight was 30-60% lower than the control in both soils at the highest rate of MCP-P application (156 kg ha(-1), 184 g m(-3)) and this was associated with visible symptoms of drying of the tips of the ultimate branchlets, in the Mt Cotton soil only. The greatest shoot and root dry weights were achieved by plants grown in the higher P adsorbing Palmwoods soil fertilised with RP at P rates of 30-184 g m(-3). Caustis plants grown in the Palmwoods soil had 2.3 times greater root dry weights than plants grown in the Mt Cotton soil irrespective of the P fertiliser type used. Caustis plants growing in Mt Cotton soil which did not receive P showed significantly lower shoot and root dry weight when compared to plants in the Palmwoods soil, probably due to the low initial bicarbonate-extractable P and the high buffering capacity of the Mt Cotton soil. The P concentration in shoots of Caustis fertilised with MCP at 184 g m(-3) was higher when grown in Mt Cotton soil (0.22%) than in the Palmwoods soil (0.15%). The P concentration was lower in the terminal ultimate branchlets (TUB); 0.15% for the Mt Cotton soil and 0.10% for the Palmwoods soil, suggesting that shoots would provide a more useful indicator of P toxicity than the TUB. It is interesting to speculate as to why plants in the Palmwoods soil showed greater root growth and fewer symptoms of P toxicity. This could be because the Palmwoods soil had the greater P adsorption capacity. These results indicate in ground production of Caustis cut foliage will require careful management of P nutrition and understanding of the complex soil/plant interactions associated with the acquisition of P. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sorption of four endocrine disruptors, bisphenol A (BPA), estrone (E1), 17 beta-estradiol (E2), and 17 alpha-ethinylestradiol (EE2) in tropical sediment samples was studied in batch mode under different conditions of pH, time, and sediment amount. Data obtained from sorption experiments using the endocrine disruptors (EDs) and sediments containing different amounts of organic matter showed that there was a greater interaction between the EDs and organic matter (OM) present in the sediment, particularly at lower pH values. The pseudosecond order kinetics model successfully explained the interaction between the EDs and the sediment samples. The theoretical and experimentally obtained q (e) values were similar, and k values were smaller for higher SOM contents. The k (F) values, obtained from the Freundlich isotherms, varied in the ranges 4.2-7.4 x 10(-2) (higher OM sediment sample, S(2)) and 1.7 x 10(-3)-3.1 x 10(-2) (lower OM sediment sample, S(1)), the latter case indicating an interaction with the sediment that increased in the order: EE2 > > E2 > E1 > BPA. These results demonstrate that the availability of endocrine disruptors may be directly related to the presence of organic material in sediment samples. Studies of this kind provide an important means of understanding the mobility, transport, and/or reactivity of this type of emergent contaminant in aquatic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the pore size distribution of a well-characterized activated carbon derived from model-dependent, adsorption integral equation (AIE) methods with those from model-independent, immersion calorimetry and isosteric heat analyses. The AIE approach applied to nitrogen gave a mean pore width of 0.57 nm; the CO2 distribution exhibited wider dispersion. Spherical model application to CO2 and diffusion limitations for nitrogen and argon were proposed as primary reasons for inconsistency. Immersion enthalpy revealed a sharp decrease in available area equivalent to a cut-off due to molecular exclusion when the accessible surface was assessed against probe kinetic diameter. Mean pore width was identified as 0.58 ± 0.02 nm, endorsing the underlying assumptions for the nitrogen-based AIE approach. A comparison of the zero-coverage isosteric heat of adsorption for various non-polar adsorptives by the porous test sample was compared with the same adsorptives in contact with a non-porous reference adsorbent, leading to an energy ratio or adsorption enhancement factor. A linear relationship between the energy ratio and probe kinetic diameter indicated a primary pore size at 0.59 nm. The advantage of this enthalpy, model-independent methods over AIE were due to no assumptions regarding probe molecular shape, and no assumptions for pore shape and/or connectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MCM-41 materials of six different pore diameters were prepared and characterized using X-ray diffraction, transmission electron microscopy, helium pycnometry, small-angle neutron scattering, and gas adsorption (argon at 77.4 and 87.4 K, nitrogen and oxygen at 77.4 K, and carbon dioxide at 194.6 K). A recent molecular continuum model of the authors, previously used for adsorption of nitrogen at 77.4 K, was applied here for adsorption of argon, oxygen, and carbon dioxide. While model predictions of single-pore adsorption isotherms for argon and oxygen are in satisfactory agreement with experimental data, significant deviation was found for carbon dioxide, most likely due to its high quadrupole moment. Predictions of critical pore diameter, below which reversible condensation occurs: were possible by the model and found to be consistent with experimental estimates, for the adsorption of the various gases. On the other hand, existing models such as the Barrett-Joyner-Halenda (BJH), Saito-Foley, and Dubinin-Astakhov models were found to be inadequate, either predicting an incorrect pore diameter or not correlating the isotherms adequately. The wall structure of MCM-41 appears to be close to that of amorphous silica, as inferred from our skeletal density measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbonaceous adsorbents were prepared by heat treatment of coal reject at 600 degrees C, after chemical treatment in HNO3, H2SO4, and NaOH at 25 and 75 degrees C. Pore structure characterization and the phenol adsorption capacities of the adsorbents showed that nitric acid pretreatment significantly enhanced the surface properties, consequently the adsorption capacities of the adsorbents. A number of samples were subsequently prepared by carbonizing coal reject at 600 degrees C, after pretreatment in HNO3 under various conditions. The acid concentration, residence time, and reaction temperature were varied to obtain adsorbents with various pore structures. The adsorption capacities of the derived adsorbents for phenol, p-nitrophenol, and benzene were measured to gain further insights into the pore structure evolution. Adsorption isotherms of phenol, p-nitrophenol, and p-chlorophenol on the best adsorbent prepared were determined and correlated with theoretical isotherm equations, such as the Langmuir, Freundlich, and Redlich-Peterson equations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article reports on the liquid phase adsorption of flavour esters onto granular activated carbon. Ethyl propionate, ethyl butyrate, and ethyl isovalerate were used as adsorbates, and Filtrasorb 400 activated carbon was chosen as the adsorbent. Sips, Toth, Unilan, and Dubinin-Radushkevich isotherm equations which are generally used for heterogeneous adsorbents were used to fit the data. Although satisfactory in fitting the data, inconsistency in parameter values indicated these models to be inadequate. On the other hand the Dubinin-Radushkevich model gave more consistent and meaningful parameter values and adsorption capacities. By employing the Dubinin-Radushkevich equation, the limiting volume of the adsorbed space, which equals the accessible micropore volume, was determined, and found to correlate with the value from carbon dioxide adsorption.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, various theories predicting the critical diameter for the absence of capillary condensation and hysteresis are applied to experimental adsorption isotherms of vapors on regular mesoporous materials. Among the various theories studied, the tensile strength approximation proposed by the authors was found to be the most successful. Reversibility of nitrogen adsorption at 77.4 K was studied on pure MCM-41 of various pore sizes, as well as mixtures of pure MCM-41 samples in a 1:1 ratio. The results of PSD and hysteresis on MCM-41 mixtures are close to that expected from studies of the pure materials. The estimates of hysteresis critical temperature and diameter of MCM-41, HMS, FSM and KIT materials are also provided.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we report the adsorption of phenylalanine (Phe) on Magnesium Aluminum Layered Double Hydroxides (Mg-Al-CO(3)-LDH) at two different temperatures (298 and 310 K) and under two distinct ionic strength conditions (with and without the addition 0.1 M of NaCl). The adsorption isotherms exhibit the same profile in all conditions, and they only differ in the amount of removed Phe. At lower ionic strength, the isotherms are almost identical at both temperatures, except for the last points, where the increase in temperature causes a decrease in the amount of adsorbed Phe. An increase in ionic strength results in a decrease in Phe adsorption. The electrokinetic potential decreases as the amount of adsorbed Phe increases, and only positive values are observed. This indicates that the surface of the adsorbent is not totally neutralized and suggests that more Phe could be removed by adsorption. The presence of Phe on the solid is confirmed by FTIR spectra, which present the specific bands assigned to Phe. The hydrophobicity of the amino acid probably contributes to its extraction, thus enabling the removal of a great amount of Phe. In conclusion, LDH is potentially applicable in the removal of Phe from wastewater.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(ethylene glycol) decorated poly( methyl methacrylate) particles were synthesized by means of emulsion polymerization using poly(ethylene glycol) sorbitan monolaurate (Tween-20) as surfactant. PMMA/PEG particles presented mean diameter (195 +/- 15) nm, indicating narrow size distribution. The adsorption behavior of bovine serum albumin (BSA) and concanavalin A (ConA) onto PMMA/PEG particles was investigated by means of spectrophotometry. Adsorption isotherms obtained for BSA onto PMMA/PEG particles fitted well sigmoidal function, which is typical for multilayer adsorption. Con A adsorbed irreversibly onto PMMA/PEG particles. The efficiency of ConA covered particles to induce dengue virus quick agglutination was evaluated. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article modifies the usual form of the Dubinin-Radushkevich pore-filling model for application to liquid-phase adsorption data, where large molecules are often involved. In such cases it is necessary to include the repulsive part of the energy in the micropores, which is accomplished here by relating the pore potential to the fluid-solid interaction potential. The model also considers the nonideality of the bulk liquid phase through the UNIFAC activity coefficient model, as well as structural heterogeneity of the carbon. For the latter the generalized adsorption integral is used while incorporating the pore-size distribution obtained by density functional theory analysis of argon adsorption data. The model is applied here to the interpretation of aqueous phase adsorption isotherms of three different esters on three commercial activated carbons. Excellent agreement between the model and experimental data is observed, and the fitted Lennard-Jones size parameter for the adsorbate-adsorbate interactions compares well with that estimated from known critical properties, supporting the modified approach. On the other hand, the model without consideration of bulk nonideality, or when using classical models of the characteristic energy, gives much poorer bts of the data and unrealistic parameter values.