966 resultados para pharmaceutical drugs


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La littérature abordant les enjeux socio-éthiques et réglementaires associés aux médicaments est relativement abondante, ce qui n’est pas le cas des dispositifs médicaux (DM). Ce dernier secteur couvre une très large diversité de produits qui servent à de multiples applications: diagnostic, traitement, gestion des symptômes de certaines conditions physiques ou psychiatriques, restauration d’une fonction débilitante, chirurgie, etc. À tort, on a tendance à croire que les DM sont réglementés de la même manière que les médicaments, que ce soit pour les exigences concernant leur mise en marché ou des pratiques de surveillance après mise en marché. Or, au cours des dernières années, leur usage élargi, leur impact sur les coûts des soins de santé, et les rappels majeurs dont certains ont fait l’objet ont commencé à inquiéter la communauté médicale et de nombreux chercheurs. Ils interpellent les autorités réglementaires à exercer une plus grande vigilance tant au niveau de l’évaluation des nouveaux DM à risque élevé avant leur mise en marché, que dans les pratiques de surveillance après mise en marché. Une stratégie plus rigoureuse d’évaluation des nouveaux DM permettrait d’assurer un meilleur suivi des risques associés à leur utilisation, de saisir la portée des divers enjeux socio-éthiques découlant de l’utilisation de certains DM, et de préserver la confiance du public. D’emblée, il faut savoir que les autorités nationales n’ont pas pour mandat d’évaluer la portée des enjeux socio-éthiques, ou encore les coûts des DM qui font l’objet d’une demande de mise en marché. Cette évaluation est essentiellement basée sur une analyse des rapports risques-bénéfices générés par l’usage du DM pour une indication donnée. L’évaluation des impacts socio-éthiques et l’analyse coûts-bénéfices relèvent des agences d’Évaluation des technologies de santé (ÉTS). Notre recherche montre que les DM sont non seulement peu fréquemment évalués par les agences d’ÉTS, mais l’examen des enjeux socio-éthiques est trop souvent encore incomplet. En fait, les recommandations des rapports d’ÉTS sont surtout fondées sur une analyse coûts-bénéfices. Or, le secteur des DM à risque élevé est particulièrement problématique. Plusieurs sont non seulement porteurs de risques pour les patients, mais leur utilisation élargie comporte des impacts importants pour les systèmes de santé. Nous croyons que le Principisme, au cœur de l’éthique biomédicale, que ce soit au plan de l’éthique de la recherche que de l’éthique clinique, constitue un outil pour faciliter la reconnaissance et l’examen, particulièrement par les agences d’ÉTS, des enjeux socio-éthiques en jeu au niveau des DM à risque élevé. Également, le Principe de Précaution pourrait aussi servir d’outil, particulièrement au sein des agences nationales de réglementation, pour mieux cerner, reconnaître, analyser et gérer les risques associés à l’évaluation et l’utilisation de ce type de DM. Le Principisme et le Principe de Précaution pourraient servir de repères 1) pour définir les mesures nécessaires pour éliminer les lacunes observées dans pratiques associées aux processus de réglementation, et 2) pour mieux cerner et documenter les enjeux socio-éthiques spécifiques aux DM à risque élevé.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prefrontal cortex (PFC) receives strong inputs from monoaminergic cell groups in the brainstem and also sends projections to these nuclei. Recent evidence suggests that the PFC exerts a powerful top-down control over the dorsal raphe nucleus (DR) and that it may be involved in the actions of pharmaceutical drugs and drugs of abuse. In the light of these findings, the precise origin of prefrontal inputs to DR was presently investigated by using the cholera toxin subunit b (CTb) as retrograde tracer. All the injections placed in DR produced retrograde labeling in the medial, orbital, and lateral divisions of the PFC as well as in the medial part of the frontal polar cortex. The labeling was primarily located in layer V. Remarkably, labeling in the medial PFC was denser in its ventral part (infralimbic and ventral prelimbic cortices) than in its dorsal part (dorsal prelimbic, anterior cingulate and medial precentral cortices). After injections in the rostral or caudal DR, the largest number of labeled neurons was observed in the medial PFC, whereas after injections in the mid-rostrocaudal DR, the labeled neurons were more homogeneously distributed in the three main PFC divisions. A cluster of labeled neurons also was observed around the apex of the rostral pole of the accumbens, especially after rostral and mid-rostrocaudal DR injections. Overall, these results confirm the existence of robust preftontal projections to DR, mainly derived from the ventral part of the medial PFC, and underscore a substantial contribution of the frontal polar cortex. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fine powders commonly have poor flowability and dispersibility due to interparticle adhesion that leads to formation of agglomerates. Knowing about adhesion in particle collectives is indispensable to gain a deeper fundamental understanding of particle behavior in powders. Especially in pharmaceutical industry a control of adhesion forces in powders is mandatory to improve the performance of inhalation products. Typically the size of inhalable particles is in the range of 1 - 5 µm. In this thesis, a new method was developed to measure adhesion forces of particles as an alternative to the established colloidal probe and centrifuge technique, which are both experimentally demanding, time consuming and of limited practical applicability. The new method is based on detachment of individual particles from a surface due to their inertia. The required acceleration in the order of 500 000 g is provided by a Hopkinson bar shock excitation system and measured via laser vibrometry. Particle detachment events are detected on-line by optical video microscopy. Subsequent automated data evaluation allows obtaining a statistical distribution of particle adhesion forces. To validate the new method, adhesion forces for ensembles of single polystyrene and silica microspheres on a polystyrene coated steel surface were measured under ambient conditions. It was possible to investigate more than 150 individual particles in one experiment and obtain adhesion values of particles in a diameter range of 3 - 13 µm. This enables a statistical evaluation while measuring effort and time are considerably lower compared to the established techniques. Measured adhesion forces of smaller particles agreed well with values from colloidal probe measurements and theoretical predictions. However, for the larger particles a stronger increase of adhesion with diameter was observed. This discrepancy might be induced by surface roughness and heterogeneity that influence small and large particles differently. By measuring adhesion forces of corrugated dextran particles with sizes down to 2 µm it was demonstrated that the Hopkinson bar method can be used to characterize more complex sample systems as well. Thus, the new device will be applicable to study a broad variety of different particle-surface combinations on a routine basis, including strongly cohesive powders like pharmaceutical drugs for inhalation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensitivity to activation of platelets is part of the delicate equilibrium differentiating hemostasis from thrombosis. Under physiological conditions it is maintained by downregulating platelet activity and removing agonists. Under pathologic conditions the clinician tries to restore this equilibrium with pharmaceutical drugs. The results obtained by such treatments are steadily improving but there is still need for better knowledge of the mechanisms involved and for alternative inhibitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most consumers consider complementary and alternative medicine (CAM) products inherently safe. The growing simultaneous use of CAM products and pharmaceutical drugs by Australian consumers increases the risk of CAM-drug interactions. The Therapeutic Goods Administration (TGA) has a two-tier, risk-based regulatory system for therapeutic goods - CAM products are regulated as low risk products and are assessed for quality and safety; and sponsors of products must hold the evidence for any claim of efficacy made about them. Adverse reactions to CAM products can be classified as intrinsic (innate to the product), or extrinsic (where the risk is not related to the product itself, but results from the failure of good manufacturing practice). Adverse reactions to CAM practices can be classified as risks of commission (which includes removal of medical therapy) and risks of omission (which includes failure to refer when appropriate). While few systematic studies of adverse events with CAM exist, and under-reporting is likely, most CAM products and practices do not appear to present a high risk; their safety needs to be put into the perspective of wider safety issues. A priority for research is to rigorously define the risks associated with both CAM products and practices so that their potential impact on public health can be assessed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper examines population trends in morphine prescriptions in Australia, and contrasts them with findings from annual surveys with regular injecting drug users (IDU). Data on morphine prescriptions from 1995 to 2003 were obtained from the Drug Monitoring System (DRUMS) run by the Australian Government Department of Health and Ageing. Data collected from regular IDU as part of the Australian Illicit Drug Reporting System (IDRS) were analysed (2001-2004). The rate of morphine prescription per person aged 15-54 years increased by 89% across Australia between 1995 and 2003 (from 46.3 to 85.9 mg per person). Almost half (46%) of IDU surveyed in 2004 reported illicit morphine use, with the highest rates in jurisdictions where heroin was less available. Recent morphine injectors were significantly more likely to be male, unemployed, out of treatment and homeless in comparison to IDU who had not injected morphine. They were also more likely to have injected other pharmaceutical drugs and to report injection related problems. Among those who had injected morphine recently, the most commonly reported injecting harms were morphine dependence (38%), difficulty finding veins into which to inject (36%) and scarring or bruising (27%). Morphine use and injection is a common practice among regular IDU in Australia. In some cases, morphine may be a substitute for illicit heroin; in others, it may be being used to treat heroin dependence where other pharmacotherapies, such as methadone and buprenorphine, are perceived as being unavailable or undesirable by IDU. Morphine injection appears to be associated with polydrug use, and with it, a range of problems related to drug injection. Further research is required to monitor and reduce morphine diversion and related harms by such polydrug injectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionic Liquids (ILs) are class of compounds, which have become popular since the mid-1990s. Despite the fact that ILs are defined by one physical property (melting point), many of the potential applications are now related to their biological properties. The use of a drug as a liquid can avoid some problems related to polymorphism which can influence a drug´s solubility and thus its dosages. Also, the arrangement of the anion or cation with a specific drug might be relevant in order to: a) change the correspondent biopharmaceutical drug classification system; b) for the drug formulation process and c) the change the Active Pharmaceutical Ingredients’ (APIs). The main goal of this Thesis is the synthesis and study of physicochemical and biological properties of ILs as APIs from beta-lactam antibiotics (ampicillin, penicillin G and amoxicillin) and from the anti-fungal Amphotericin B. All the APIs used here were neutralized in a buffer appropriate hydroxide cations. The cation hydroxide was obtained on Amberlite resin (in the OH form) in order to exchange halides. The biological studies of these new compounds were made using techniques like the micro dilution and colorimetric methods. Overall a total of 19 new ILs were synthesised (6 ILs based on ampicillin, 4 ILs, based on amoxicillin, 6 ILs based on penicillin G and 4 ILs based on amphotericin B) and characterized by spectroscopic and analytical methods in order to confirm their structure and purity. The study of the biological properties of the synthesised ILs showed that some have antimicrobial activity against bacteria and yeast cells, even in resistant bacteria. Also this work allowed to show that ILs based on ampicillin could be used as anti-tumour agents. This proves that with a careful selection of the organic cation, it is possible to provoke important physico-chemical and biological alteration in the properties of ILs-APIs with great impact, having in mind their applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A rapid and sensitive method using high performance liquid chromatography has been developed and validated for the simultaneous determination of non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and human serum. Six NSAIDs including: naproxen sodium, diclofenac sodium, meloxicam, flurbiprofen, tiaprofenic and mefenamic acid were analyzed simultaneously in presence of ibuprofen as internal standard on Mediterranea C18 (5 µm, 250 x 0.46 mm) column. Mobile phase comprised of methanol: acetonitrile: H2O (60:20:20, v/v; pH 3.35) and pumped at a flow rate of 1 mL min-1 using 265 nm UV detection. The method was linear over a concentration range of 0.25-50 µg mL-1 (r² = 0.9999).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water is susceptible to be used for numerous purposes, including edible, both for humans and animals. In the food animal production, drinking water is frequently used as a way to carry out the most common pharmacological treatments. In these cases, there are many variables which could degrade drugs dissolved in this mean, even when properly arranged pharmaceutical formulations are used. In fact, although a product obtains a Marketing Authorization through appropriate laboratory studies both drug stability and solubility, on the other hand the solubility of the same drug in natural water used as a drinking water is not documented. In the present study has been evaluated the dissolution kinetics (at 0 hours and 24 hours) of products, having oxytetracycline and tylosin as active ingredient, used in drinking water samples in order to see how the different physical and chemical factors that characterize the drinking water may affect therapeutic efficacy. In fact, multiple factors, also of little relevance if individually considered, are able to adversely affect the pharmacological treatment carried out in drinking water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. Pharmaceutical-sponsored patient assistance programs (PAPs) are charity programs that provide free or reduced-priced medications to eligible patients. PAPs have the potential to improve prescription drug accessibility for patients but currently there is limited information about their use and effectiveness. ^ Objectives and methods. This dissertation described the use of PAPs in the U.S. through the conduct of two studies: (1) a systematic review of primary studies of PAPs from commercially-published and “grey” literature sources; and (2) a retrospective, cross-sectional study of cancer patients' use of PAPs at a tertiary care cancer outpatient center. ^ Results. (1) The systematic review identified 33 studies: 15 evaluated the impact of PAP enrollment assistance programs on patient healthcare outcomes; 7 assessed institutional costs of providing enrollment assistance; 7 surveyed stakeholders; 4 examined other aspects. Standardized mean differences calculated for disease indicator outcomes (most of which were single group, pre-posttest designs) showed significant decreases in glycemic and lipid control, and inconsistent results for blood pressure. Grey literature abstracts reported insufficient statistics for calculations. Study heterogeneity made weighted summary estimates inappropriate. Economic analyses indicated positive financial benefits to institutions providing enrollment assistance (cost) compared to the wholesale value of the medications provided (benefit); analyses did not value health outcomes. Mean quality of reporting scores were higher for observational studies in commercially-published articles versus full text, grey literature reports. (2) The cross-sectional study found that PAP outpatients were significantly more likely to be uninsured, indigent, and < 65 years old than non-PAP patients. Nearly all non-PAP and PAP prescriptions were for non-cancer conditions, either for co-morbidities (e.g., hypertension) or the management of treatment side effects (e.g., pain). Oral chemotherapies from PAPs were significantly more likely to be for breast versus other cancers, and be a newer, targeted versus traditional chemotherapy.^ Conclusions. In outpatient settings, PAP enrollment assistance plus additional medication services (e.g., counseling, reminders, and free samples) is associated with improved disease indicators for patients. Healthcare institutions, including cancer centers, can offset financial losses from uncompensated drug costs and recoup costs invested in enrollment assistance programs by procuring free PAP medications. Cancer patients who are indigent and uninsured may be able to access more outpatient medications for their supportive care needs through PAPs, than for cancer treatment options like oral chemotherapies. Because of the selective availability of drugs through PAPs, there may be more options for newer, oral, targeted chemotherapies for the treatment breast cancer versus other for other cancers.^