970 resultados para periodontal regeneration


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM: This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. MATERIALS AND METHODS: A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. RESULTS: The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. CONCLUSIONS: This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Despite the worldwide increased prevalence of osteoporosis, no data are available evaluating the effect of an enamel matrix derivative (EMD) on the healing of periodontal defects in patients with osteoporosis. This study aims to evaluate whether the regenerative potential of EMD may be suitable for osteoporosis-related periodontal defects. METHODS Forty female Wistar rats (mean body weight: 200 g) were used for this study. An osteoporosis animal model was carried out by bilateral ovariectomy (OVX) in 20 animals. Ten weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar. Animals were randomly assigned to four groups of 10 animals per group: 1) control animals with unfilled periodontal defects; 2) control animals with EMD-treated defects; 3) OVX animals with unfilled defects; and 4) OVX animals with EMD-treated defects. The animals were euthanized 28 days later, and the percentage of defect fill and thickness of newly formed bone and cementum were assessed by histomorphometry and microcomputed tomography (micro-CT) analysis. The number of osteoclasts was determined by tartrate-resistant acid phosphatase (TRAP), and angiogenesis was assessed by analyzing formation of blood vessels. RESULTS OVX animals demonstrated significantly reduced bone volume in unfilled defects compared with control defects (18.9% for OVX animals versus 27.2% for control animals) as assessed by micro-CT. The addition of EMD in both OVX and control animals resulted in significantly higher bone density (52.4% and 69.2%, respectively) and bone width (134 versus 165μm) compared with untreated defects; however, the healing in OVX animals treated with EMD was significantly lower than that in control animals treated with EMD. Animals treated with EMD also demonstrated significantly higher cementum formation in both control and OVX animals. The number of TRAP-positive osteoclasts did not vary between untreated and EMD-treated animals; however, a significant increase was observed in all OVX animals. The number of blood vessels and percentage of new vessel formation was significantly higher in EMD-treated samples. CONCLUSIONS The results from the present study suggest that: 1) an osteoporotic phenotype may decrease periodontal regeneration; and 2) EMD may support greater periodontal regeneration in patients suffering from the disease. Additional clinical studies are necessary to fully elucidate the possible beneficial effect of EMD for periodontal regeneration in patients suffering from osteoporosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ultimate goals of periodontal therapy remain the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and the re-establishment of a sustainable health-promoting biofilm from one characterized by dysbiosis. This volume of Periodontology 2000 discusses the multiple facets of a transition from therapeutic empiricism during the late 1960s, toward regenerative therapies, which is founded on a clearer understanding of the biophysiology of normal structure and function. This introductory article provides an overview on the requirements of appropriate in vitro laboratory models (e.g. cell culture), of preclinical (i.e. animal) models and of human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration but also suffer from a unidimensional and simplistic approach that does not account for the complexities of the in vivo situation, in which multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research, employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches but the outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal-regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate the healing of class III furcation defects following transplantation of autogenous periosteal cells combined with b-tricalcium phosphate (b-TCP). Periosteal cells obtained from Beagle dogs’ periosteum explant cultures, were inoculated onto the surface of b-TCP. Class III furcation defects were created in the mandibular premolars. Three experimental groups were used to test the defects’ healing: group A, b-TCP seeded with periosteal cells were transplanted into the defects; group B, b-TCP alone was used for defect filling; and group C, the defect was without filling materials. Twelve weeks post surgery, the tissue samples were collected for histology, immunohistology and X-ray examination. It was found that both the length of newly formed periodontal ligament and the area of newly formed alveolar bone in group A, were significantly increased compared with both group B and C. Furthermore, both the proportion of newly formed periodontal ligament and newly formed alveolar bone in group A were much higher than those of group B and C. The quantity of cementum and its percentage in the defects (group A) were also significantly higher than those of group C. These results indicate that autogenous periosteal cells combined with b-TCP application can improve periodontal tissue regeneration in class III furcation defects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The exact phenotype of human periodontal ligament cells (hPDLCs) remains a controversial area. Basic fibroblast growth factor (FGF‑2) exhibits various functions and its effect on hPDLCs is also controversial. Therefore, the present study examined the effect of FGF‑2 on the growth and osteoblastic phenotype of hPDLCs with or without osteogenic inducers (dexamethasone and β‑glycerophosphate). FGF‑2 was added to defined growth culture medium and osteogenic inductive culture medium. Cell proliferation, osteogenic differentiation and mineralization were measured. The selected differentiation markers, Runx2, collagen type Ⅰ, α1 (Col1a1), osteocalcin (OCN) and epidermal growth factor receptor (EGFR), were investigated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Runx2 and OCN protein expression was measured by western blotting. FGF‑2 significantly increased the proliferation of hPDLCs, but did not affect alkaline phosphatase activity. RT‑qPCR analysis revealed enhanced mRNA expression of Runx2, OCN and EGFR, but suppressed Col1a1 gene expression in the absence of osteogenic inducers, whereas all these gene levels had no clear trend in their presence. The Runx2 protein expression was clearly increased, but the OCN protein level showed no evident trend. The mineralization assay demonstrated that FGF‑2 inhibited mineralized matrix deposition with osteogenic inducers. These results suggested that FGF‑2 induces the growth of immature hPDLCs, which is a competitive inhibitor of epithelial downgrowth, and suppresses their differentiation into mineralized tissue by affecting Runx2 expression. Therefore, this may lead to the acceleration of periodontal regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The periodontal ligament is the key tissue facilitating periodontal regeneration. This study aimed to fabricate decellularized human periodontal ligament cell sheets for subsequent periodontal tissue engineering applications. The decellularization protocol involved the transfer of intact human periodontal ligament cell sheets onto melt electrospun polycaprolactone membranes and subsequent bi-directional perfusion with NH4OH/Triton X-100 and DNase solutions. The protocol was shown to remove 92% of DNA content. The structural integrity of the decellularized cell sheets was confirmed by a collagen quantification assay, immunostaining of human collagen type I and fibronectin, and scanning electron microscopy. ELISA was used to demonstrate the presence of residual basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) in the decellularized cell sheet constructs. The decellularized cell sheets were shown to have the ability to support recellularization by allogenic human periodontal ligament cells. This study describes the fabrication of decellularized periodontal ligament cell sheets that retain an intact extracellular matrix and resident growth factors and can support repopulation by allogenic cells. The decellularized hPDL cell sheet concept has the potential to be utilized in future "off-the-shelf" periodontal tissue engineering strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Periodontal inflammation can inhibit cell differentiation of periodontal ligament cells (PDLCs), resulting in decreased bone/cementum regeneration ability. The Wnt signaling pathway, including canonical Wnt/β-catenin signaling and noncanonical Wnt/Ca2+ signaling, plays essential roles in cell proliferation and differentiation during tooth development. However, little is still known whether noncanonical Wnt/Ca2+ signaling cascade could regulate cementogenic/osteogenic differentiation capability of PDLCs within an inflammatory environment. Therefore, in this study, human PDLCs (hPDLCs) and their cementogenic differentiation potential were investigated in the presence of cytokines. The data demonstrated that both cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) inhibited cell proliferation, relative alkaline phosphatase activity, bone/cementum-related gene/protein expression, and canonical Wnt pathway-related gene/protein expression in hPDLCs. Interestingly, both cytokines upregulated the noncanonical Wnt/Ca2+ signaling-related gene and protein expression in hPDLCs. When the Wnt/Ca2+ pathway was blocked by Ca2+/calmodulin-dependent protein kinase II inhibitor KN93, even in the presence of IL-6 and TNF-α, cementogenesis could be stimulated in hPDLCs. Our data indicate that the Wnt/Ca2+ pathway plays an inhibitory role on PDLC cementogenic differentiation in inflammatory microenvironments. Therefore, targeting the Wnt/Ca2+ pathway may provide a novel therapeutic approach to improve periodontal regeneration for periodontal diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The aim of this study is to verify the regenerative potential of particulate anorganic bone matrix synthetic peptide-15 (ABM-P-15) in class III furcation defects associated or not with expanded polytetrafluoroethylene membranes. Methods: Class III furcation defects were produced in the mandibular premolars (P2, P3, and P4) of six dogs and filled with impression material. The membranes and the bone grafts were inserted into P3 and P4, which were randomized to form the test and control groups, respectively; P2 was the negative control group. The animals were sacrificed 3 months post-treatment. Results: Histologically, the complete closure of class III furcation defects was not observed in any of the groups. Partial periodontal regeneration with similar morphologic characteristics among the groups was observed, however, through the formation of new cementum, periodontal ligament, and bone above the notch. Histologic analysis showed granules from the bone graft surrounded by immature bone matrix and encircled by newly formed tissue in the test group. The new bone formation area found in the negative control group was 2.28 +/- 2.49 mm(2) and in the test group it was 6.52 +/- 5.69 mm(2), which showed statistically significant differences for these groups considering this parameter (Friedman test P <0.05). There was no statistically significant difference among the negative control, control, and test groups for the other parameters. Conclusions: The regenerative potential of ABM-P-15 was demonstrated through new bone formation circumscribing and above the graft particles. The new bone also was accompanied by the formation of new cementum and periodontal ligament fibers. J Periodontol 2010;81:594-603.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low level laser irradiation (LLLI) has been used in Dentistry to promote wound healing and tissue regeneration. The literature shows a positive effect of LLLI on cell proliferation, but little is known about their effectiveness in promoting stem cells proliferation. The aim of this study was to evaluate the effect of LLLI on the proliferative rate of human periodontal ligament stem cells. Extracts of periodontal ligament were isolated from two third molars removed by surgical and/or orthodontic indication. After enzymatic digestion, the cells were grown in α-MEM culture medium supplemented with antibiotics and 15% fetal bovine serum. On the third subculture, the cells were irradiated with a InGaAlP-diode laser, using two different energy densities (0,5J/cm 2 - 16 seconds and 1,0J/cm² - 33 seconds), with wavelength of 660nm and output power of 30mW. A new irradiation, using the same parameters, was performed 48h after the first. A control group (non irradiated) was kept under the same experimental culture conditions. The Trypan blue exclusion test and the mitochondrial activity of the cells measured by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] essay were performed to assess the cell proliferation in the intervals of 0, 24, 48 e 72 h after irradiation. The data of cell counts were submitted to nonparametrical statistical tests (Kruskal-Wallis and Mann-Whitney), considering a confidence interval of 95%. DAPI (4 -6-Diamidino-2-phenylindole) staining of the cells was performed at 72h interval to evaluate possible nuclear morphological changes induced by LLLI. The results of this study show that the energy density of 1,0 J/cm² promoted greater cell proliferation compared to the other groups (control and 0,5 J/cm²) at intervals of 48 and 72h. The mitochondrial activity measured by MTT essay showed similar results to the Trypan blue cell counting test. The group irradiated with 1,0J/cm² exhibited a significantly higher MTT activity in the intervals of 48 and 72h, when compared to the group irradiated with 0,5J/cm². No nuclear morphological change was observed in the cells from the three groups studied. It is concluded that LLLI has stimulatory effects on the proliferation of human periodontal ligament stem cells. Therefore, the use of laser irradiation in this cell type may be important to promote future advances in periodontal regeneration

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: the poor predictability of periodontal regenerative treatment of Class III furcation defects stimulates the study of alternatives to improve its results, such as the use of polypeptide growth factors. The objective of this study was to evaluate, both histologically and histometrically, the effects of topical application of basic fibroblast growth factor (b-FGF) associated with guided tissue regeneration (GTR) in the treatment of Class III defects surgically induced in dogs.Methods: All second and fourth premolars of 5 mongrel dogs were used and randomly assigned to one of three treatment groups: group 1 (control), treated with scaling and root planing, tetracycline hydrochloride (125 mg/ml) conditioning, and GTR with a collagen membrane; group 2, same treatment as group 1 plus 0.5 mg of b-FGF; group 3, same treatment as group 1 plus 1.0 mg of b-FGF. After a 90-day healing period, routine histologic processing and staining with hematoxylin and eosin and Masson trichrome were performed.Results: the descriptive analysis indicated better regenerative results in both groups treated with b-FGF while the histometric data, analyzed by means of analysis of variance (ANOVA), showed greater filling of the defects in group 2 in comparison to the defects in groups 3 and 1, respectively, which was represented by a smaller area of plaque-occupied space (P = 0.004) as well as a greater amount of newly formed cementum (P = 0.002).Conclusions: These results indicate that b-FGF, especially in smaller doses, may enhance the regenerative results in Class III furcation lesions, leading to greater filling of these defects with both mineralized and non-mineralized tissues.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluated the effects of bFGF and TGF-beta, individually and combined, on cell proliferation and collagen metabolism. Primary human periodontal ligament cells were stimulated with two concentrations (I and 10 ng/ml) of each growth factor, both individually and combined. Proliferation was determined by a commercial biochemical assay. Real time RT-PCR determined gene expression of NMP-1 and -2, collagen types I and III, TIMP-1, -2 and -3. Autocrine effects on synthesis of bFGF and TGF-beta were evaluated by ELISA. Only TGF-beta, either isolated or associated with bFGF, significantly increased cell proliferation. TGF-beta had anabolic effects, increasing expression of type I and III collagen as well as of TIMPs, whereas bFGF had opposite effects. When bFGF and TGF-beta were associated, the anabolic effects prevailed. Synthesis of TGF-beta was induced only by the association of lower concentrations of the growth factors, whereas there was a dose-dependent production of bFGF. It is concluded that bFGF had a predominantly catabolic effect, and TGF-beta exerted an anabolic effect on hPDL cells. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)