998 resultados para peptide processing
Resumo:
Plants exhibit different developmental strategies than animals; these are characterized by a tight linkage between environmental conditions and development. As plants have neither specialized sensory organs nor a nervous system, intercellular regulators are essential for their development. Recently, major advances have been made in understanding how intercellular regulation is achieved in plants on a molecular level. Plants use a variety of molecules for intercellular regulation: hormones are used as systemic signals that are interpreted at the individual-cell level; receptor peptide-ligand systems regulate local homeostasis; moving transcriptional regulators act in a switch-like manner over small and large distances. Together, these mechanisms coherently coordinate developmental decisions with resource allocation and growth.
Resumo:
We have used synthetic peptide antibodies to probe conformational changes that occur during the cleavage cascade which generates the capsid proteins of a picornavirus. The initial translation product of 97 kDa, the precursor of all four structural proteins, is cleaved to form a 63 kDa fragment which, we show, has significantly different folding characteristics to both its larger parent and its products. We demonstrate that proteolytic cleavages as distant as 520 residues from epitopes confer sufficiently large conformational changes as to render them unrecognisable. To our knowledge, this is the first demonstration of this phenomenon in the picornavirus system.
Resumo:
The rat stomach is rich in endocrine cells. The acid-producing (oxyntic) mucosa contains ECL cells, A-like cells, and somatostatin (D) cells, and the antrum harbours gastrin (G) cells, enterochromaffin (EC) cells and D cells. Although chromogranin A (CgA) occurs in all these cells, its processing appears to differ from one cell type to another. Eleven antisera generated to different regions of rat CgA, two antisera generated to a human (h) CgA sequences, and one to a bovine Ib) CgA sequence, respectively, were employed together with antisera directed towards cell-specific markers such as gastrin (G cells), serotonin (EC cells), histidine decarboxylsae (ECL cells) and somatostatin (D cells) to characterize the expression of CgA and CgA-derived peptides in the various endocrine cell populations of the rat stomach. In the oxyntic mucosa, antisera raised against CgA(291-319) and CGA(316-321) immunostained D cells exclusively, whereas antisera raised against bCgA(82-91) and CgA(121-128) immunostained A-like cells and D cells. Antisera raised against CgA(318-349) and CgA(437-448) immunostained ECL cells and A-like cells, but not D cells. In the antrum, antisera against CgA(291-319) immunostained D cells, and antisera against CgA(351-356) immunostained G cells. Our observations suggest that each individual endocrine cell type in the rat stomach generates a unique mixture of CgA-derived peptides, probably reflecting cell-specific differences in the post-translational processing of CgA and its peptide products. A panel of antisera that recognize specific domains of CgA may help to identify individual endocrine cell populations.
Resumo:
The skin secretions produced by many amphibians are formidable chemical/biological weapons deployed as a defence against predators. Bioactive peptides are often the predominant class of biochemical within these secretions and the inventory of such remains incomplete with each individual taxon producing unique cocktails contained within which are some signature peptides, such as bradykinins and tachykinins. These secretions have been the source of many peptides subsequently found to have structural homologues in vertebrate neuroendocrine systems (bombesin/GRP; sauvagine/CRF; caerulein/CCK) and vice versa (bradykinin, CGRP, NMU). They are thus unequivocally intriguing resources for novel bioactive peptide discovery. Here we describe a novel 22-mer amidated peptide, named GK-22 amide (N-terminal Gly (G) and C-terminal Lys (K) amide) with an internal disulphide bridge between Cys (C) 11 and 20 from the skin secretion of Odorrana versabilis. Molecular cloning indicated that it is encoded as a single copy on a biosynthetic precursor of 59 amino acid residues consisting of a signal peptide, an acidic amino acid residue-rich spacer domain and a mature peptide encoding domain flanked N-terminally by a classical -Lys-Arg- (KR) propeptide convertase processing site and C-terminally by a Gly (G) residue amide donor. A synthetic replicate of this peptide produced potent and dose-dependent contraction of the smooth muscle of rat urinary bladder. GK-22 amide thus represents the prototype of a novel class of myotropic peptide from amphibian skin and its discovery illustrates the continuing potential of this resource to this end.
Resumo:
Intermedin (IMD) is a novel peptide related to calcitonin gene-related peptide (CGRP) and adrenomedullin (AM). Proteolytic processing of a larger precursor yields a series of biologically active C-terminal fragments, IMD1–53, IMD1–47 and IMD8–47. IMD shares a family of receptors with AM and CGRP composed of a calcitonin-receptor like receptor (CALCRL) associated with one of three receptor activity modifying proteins (RAMP). Compared to CGRP, IMD is less potent at CGRP1 receptors but more potent at AM1 receptors and AM2 receptors; compared to AM, IMD is more potent at CGRP1 receptors but less potent at AM1 and AM2 receptors. The cellular and tissue distribution of IMD overlaps in some aspects with that of CGRP and AM but is distinct from both. IMD is present in neonatal but absent or expressed sparsely, in adult heart and vasculature and present at low levels in plasma. The prominent localization of IMD in hypothalamus and pituitary and in kidney is consistent with a physiological role in the central and peripheral regulation of the circulation and water-electrolyte homeostasis. IMD is a potent systemic and pulmonary vasodilator, influences regional blood flow and augments cardiac contractility. IMD protects myocardium from the deleterious effects of oxidative stress associated with ischaemia-reperfusion injury and exerts an anti-growth effect directly on cardiomyocytes to oppose the influence of hypertrophic stimuli. The robust increase in expression of the peptide in hypertrophied and ischaemic myocardium indicates an important protective role for IMD as an endogenous counter-regulatory peptide in the heart.
The inhibitor profiling of the caspase family of proteases using substrate-derived peptide glyoxals.
Resumo:
A series of substrate-based a-keto-ß-aldehyde (glyoxal) sequences have been synthesised and evaluated as inhibitors of the caspase family of cysteine proteases. A number of potent inhibitor sequences have been identified. For example, a palmitic acid containing sequence pal-Tyr-Val-Ala-Asp-glyoxal was demonstrated to be an extremely effective inhibitor of caspase-1, inhibiting not only the action of the protease against synthetic fluorogenic substrates (Ki = 0.3 nM) but also blocking its processing of pro-interleukin-1beta (pro-IL-1ß). In addition, the peptide Ac-Asp-Glu-Val-Asp-glyoxal, which is based on the consensus cleavage sequence for caspase-3, is a potent inhibitor of this protease (Ki = 0.26 nM) yet only functions as a comparatively modest inhibitor of caspase-1 (Ki = 451 nM). Potent inhibitor sequences were also identified for caspases-6 and -8. However, the degree of discrimination between the family members is limited. The ability of Ac-Asp-Glu-Val-Asp-glyoxal to block caspase-3 like activity in whole cells and to delay the development of apoptosis was assessed. When tested against caspase-3 like activity in cell lysates, Ac-Asp-Glu-Val-Asp-glyoxal displayed effective inhibition similar to that observed against recombinant caspase-3. Treatment of whole cells with this potent caspase-3 inhibitor was however, not sufficient to significantly stall the development of apoptosis in-vitro.
Resumo:
The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata), in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C) residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues). Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.
Resumo:
Measuring neuropeptides in biological tissues by radioimmunoassay requires efficient extraction that maintains their immunoreactivity. Many different methods for extraction have been described, but there is little information on optimal extraction methods for individual neuropeptides from human dental pulp tissue. The aim was therefore to identify an effective extraction procedure for three pulpal neuropeptides: substance P. neurokinin A and calcitonin gene-related peptide. Tissue was obtained from 20 pulps taken from teeth freshly extracted for orthodontic reasons. The pulp samples were divided into four equal groups and different extraction methods were used for each group. Boiling whole pulp in acetic acid gave the highest overall yield and, in addition, offered an easy and rapid means of pulp tissue processing. The use of protease inhibitors did not increase the recovery of the immunoreactive neuropeptides but did provide the best combination of maximal recoveries and minimal variability. These results should be useful for planning the extraction of these neuropeptides from human pulp tissue in future studies. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Opisthorchis viverrini is an important helminth pathogen of humans that is endemic in Thailand and Laos. Adult flukes reside within host bile ducts and feed on epithelial tissue and blood cells. Chronic opisthorchiasis is associated with severe hepatobiliary diseases such as cholangiocarcinoma. Here we report that adult O. viverrini secrete two major cysteine proteases: cathepsin F (Ov-CF-1) and cathepsin B1 (Ov-CB-1). Ov-CF-1 is secreted as an inactive zymogen that autocatalytically processes and activates to a mature enzyme at pH 4.5 via an intermolecular cleavage at the prosegment-mature domain junction. Ov-CB-1 is also secreted as a zymogen but, in contrast to Ov-CF-1, is fully active against peptide and macromolecular substrates despite retaining the N-terminal prosegment. The active Ov-CB-1 zymogen was capable of trans-activating Ov-CF-1 by proteolytic removal of its prosegment at pH 5.5, a pH at which the Ov-CF-1 zymogen cannot autocatalytically activate. Both cathepsins hydrolyse human haemoglobin but their combined action more efficiently degrades haemoglobin to smaller peptides than each enzyme alone. Ov-CF-1 degraded extracellular matrix proteins more effectively than Ov-CB-1 at physiological pH. We propose that Ov-CB-1 regulates Ov-CF-1 activity and that both enzymes work together to degrade host tissue contributing to the development of liver fluke-associated cholangiocarcinoma.
Resumo:
We previously reported the identification of a novel family of immunomodulatory proteins, termed helminth defense molecules (HDMs), that are secreted by medically important trematode parasites. Since HDMs share biochemical, structural, and functional characteristics with mammalian cathelicidin-like host defense peptides (HDPs), we proposed that HDMs modulate the immune response via molecular mimicry of host molecules. In the present study, we report the mechanism by which HDMs influence the function of macrophages. We show that the HDM secreted by Fasciola hepatica (FhHDM-1) binds to macrophage plasma membrane lipid rafts via selective interaction with phospholipids and/or cholesterol before being internalized by endocytosis. Following internalization, FhHDM-1 is rapidly processed by lysosomal cathepsin L to release a short C-terminal peptide (containing a conserved amphipathic helix that is a key to HDM function), which then prevents the acidification of the endolysosomal compartments by inhibiting vacuolar ATPase activity. The resulting endolysosomal alkalization impedes macrophage antigen processing and prevents the transport of peptides to the cell surface in conjunction with MHC class II for presentation to CD4(+) T cells. Thus, we have elucidated a novel mechanism by which helminth pathogens alter innate immune cell function to assist their survival in the host.-Robinson, M. W., Alvarado, R., To, J., Hutchinson, A. T., Dowdell, S. N., Lund, M., Turnbull, L., Whitchurch, C. B., O'Brien, B. A., Dalton, J. P., Donnelly, S. A helminth cathelicidin-like protein suppresses antigen processing and presentation in macrophages via inhibition of lysosomal vATPase.
Resumo:
Posttranslational processing of proadrenomedullin generates two biologically active peptides, adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP). Sequence comparison of homologous proadrenomedullin genes in vertebrate evolution shows a high degree of stability in the reading frame for AM, whereas PAMP sequence changes rapidly. Here we investigate the functional significance of PAMP phylogenetic variation studying two of PAMP's better characterized physiological activities, angiogenic potential and antimicrobial capability, with synthetic peptides carrying the predicted sequence for human, mouse, chicken, and fish PAMP. All tested peptides induced angiogenesis when compared with untreated controls, but chicken and fish PAMP, which lack terminal amidation, were apparently less angiogenic than their human and mouse homologs. Confirming the role of amidation in angiogenesis, Gly-extended and free acid variants of human PAMP produced responses similar to the natural nonamidated peptides. In contrast, antimicrobial activity was restricted to human PAMP, indicating that this function may have been acquired at a late time during the evolution of PAMP. Interestingly, free acid human PAMP retained antimicrobial activity whereas the Gly-extended form did not. This fact may reflect the need for maintaining a tightly defined structural conformation in the pore-forming mechanism proposed for these antimicrobial agents. The evolution of PAMP provides an example of an angiogenic peptide that developed antimicrobial capabilities without losing its original function.
Resumo:
Amphibian skin has proved repeatedly to be a largely untapped source of bioactive peptides and this is especially true of members of the Phyllomedusinae subfamily of frogs native to South and Central America. Tryptophyllins are a group of peptides mainly found in the skin of members of this genus. In this study, a novel tryptophyllin (TPH) type 3 peptide, named AcT-3, has been isolated and structurally-characterised from the skin secretion and lyophilised skin extract of the red-eye leaf frog, Agalychnis callidryas. The peptide was identified in and purified from the skin secretion by reverse-phase HPLC. MALDI-TOF mass spectrometry and MS/MS fragmentation sequencing established its primary structure as: pGlu-Gly-Lys-Pro-Tyr-Trp-Pro-Pro-Pro-Phe-Leu-Pro-Glu, with a non-protonated molecular mass of 1538.19Da. The mature peptide possessed the canonical N-terminal pGlu residue that arises from post-translational modification of a Gln residue. The deduced open-reading frame consisted of 63 amino acid residues encoding a highly-conserved signal peptide of approximately 22 amino acid residues, an intervening acidic spacer peptide domain, a single AcT-3 encoding domain and a C terminal processing site. A synthetic replicate of AcT-3 was found to antagonise the effect of BK on rat tail artery smooth muscle and to contract the intestinal smooth muscle preparations. It was also found that AcT-3 could dose-dependently inhibit the proliferation of human prostate cancer cell lines after 72h incubation.
Resumo:
Hedgehog proteins are important cell-cell signalling proteins utilized during the development of multicellular animals. Members of the hedgehog gene family have not been detected outside the Metazoa, raising unanswered questions about their evolutionary origin. Here we report a highly unusual hedgehog-related gene from a choanoflagellate, a close unicellular relative of the animals. The deduced C-terminal domain, Hoglet-C, is homologous to the autocatalytic domain of Hedgehog proteins and is predicted to function in autocatalytic cleavage of the precursor peptide. In contrast, the N-terminal Hoglet-N peptide has no similarity to the signalling peptide of Hedgehog (Hh-N). Instead, Hoglet-N is deduced to be a secreted protein with an enormous threonine-rich domain of unprecedented size and purity (over 200 threonine residues) and two polysaccharide-binding domains. Structural modelling reveals that these domains have a novel combination of features found in cellulose-binding domains (CBD) of types IIa and IIb, and are expected to bind cellulose. We propose that the two CBD domains enable Hoglet-N to bind to plant matter, tethering an amorphous nucleophilic anchor, facilitating transient adhesion of the choanoflagellate cell. Since HhC and Hoglet-C are homologous, but Hh-N and Hoglet-N are not, we argue that metazoan hedgehog genes evolved by fusion of two distinct genes.
Resumo:
The biological activity of the proline rich decapeptde Bj PRO 10c a processing product of the C type natriuretic peptide precursor protein, expressed in the brain and the venom gland of the pit viper Bothrops jararaca, was originally attributed to the inhibition of the somatic angiotensm converting enzyme activity with subsequent ant hypertensive effect However recent results suggest broader biological activity may also be involved in the cardiovascular effects of this peptide Here we show that Bj PRO 10c enhances and sustains the generation of nitric made (NO) by regulating argininosuccinate synthase activity and thereby velocity of the citrulline NO cycle Bj PRO 10c-mediated effects not restricted to the cardiovascular system since NO production was also induced in cells of astroglial origin Bj PRO 10c was internalized by C6 astroglioma cells where it induces NO production and upregulation of the citrulline NO cycle cells in a dose dependent fashion In view of that, astroglial cells function as L arginine pool for NO production in neighboring neurons, we suggest a regulatory function for Bj PRO-10c on the metabolism of this gaseous neurotransmitter in the CNS Moreover, proliferation of astroglial cells was reduced in the presence of Bj PRO 10c however, cell death was not induced Since NO donors have been studied for the treatment of solid cancers Bj PRO 10c may serve as structural model for developing drugs to improve the effects of cancer therapy based on the peptide`s ability to augment NO production (C) 2010 Elsevier B V All rights reserved
Resumo:
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.