1000 resultados para parametric identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents semiparametric estimators of changes in inequality measures of a dependent variable distribution taking into account the possible changes on the distributions of covariates. When we do not impose parametric assumptions on the conditional distribution of the dependent variable given covariates, this problem becomes equivalent to estimation of distributional impacts of interventions (treatment) when selection to the program is based on observable characteristics. The distributional impacts of a treatment will be calculated as differences in inequality measures of the potential outcomes of receiving and not receiving the treatment. These differences are called here Inequality Treatment Effects (ITE). The estimation procedure involves a first non-parametric step in which the probability of receiving treatment given covariates, the propensity-score, is estimated. Using the inverse probability weighting method to estimate parameters of the marginal distribution of potential outcomes, in the second step weighted sample versions of inequality measures are computed. Root-N consistency, asymptotic normality and semiparametric efficiency are shown for the semiparametric estimators proposed. A Monte Carlo exercise is performed to investigate the behavior in finite samples of the estimator derived in the paper. We also apply our method to the evaluation of a job training program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundao de Amparo Pesquisa do Estado de So Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. 2013 Academic Publications, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundao de Amparo Pesquisa do Estado de So Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The genetic mechanisms underlying interindividual blood pressure variation reflect the complex interplay of both genetic and environmental variables. The current standard statistical methods for detecting genes involved in the regulation mechanisms of complex traits are based on univariate analysis. Few studies have focused on the search for and understanding of quantitative trait loci responsible for gene environmental interactions or multiple trait analysis. Composite interval mapping has been extended to multiple traits and may be an interesting approach to such a problem. Methods We used multiple-trait analysis for quantitative trait locus mapping of loci having different effects on systolic blood pressure with NaCl exposure. Animals studied were 188 rats, the progenies of an F2 rat intercross between the hypertensive and normotensive strain, genotyped in 179 polymorphic markers across the rat genome. To accommodate the correlational structure from measurements taken in the same animals, we applied univariate and multivariate strategies for analyzing the data. Results We detected a new quantitative train locus on a region close to marker R589 in chromosome 5 of the rat genome, not previously identified through serial analysis of individual traits. In addition, we were able to justify analytically the parametric restrictions in terms of regression coefficients responsible for the gain in precision with the adopted analytical approach. Conclusion Future work should focus on fine mapping and the identification of the causative variant responsible for this quantitative trait locus signal. The multivariable strategy might be valuable in the study of genetic determinants of interindividual variation of antihypertensive drug effectiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of translation fields, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis focuses on the problem of robust output regulation for minimum phase nonlinear systems by means of identification techniques. Given a controlled plant and an exosystem (an autonomous system that generates eventual references or disturbances), the control goal is to design a proper regulator able to process the only measure available, i.e the error/output variable, in order to make it asymptotically vanishing. In this context, such a regulator can be designed following the well known internal model principle that states how it is possible to achieve the regulation objective by embedding a replica of the exosystem model in the controller structure. The main problem shows up when the exosystem model is affected by parametric or structural uncertainties, in this case, it is not possible to reproduce the exact behavior of the exogenous system in the regulator and then, it is not possible to achieve the control goal. In this work, the idea is to find a solution to the problem trying to develop a general framework in which coexist both a standard regulator and an estimator able to guarantee (when possible) the best estimate of all uncertainties present in the exosystem in order to give robustness to the overall control loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In applied work economists often seek to relate a given response variable y to some causal parameter mu* associated with it. This parameter usually represents a summarization based on some explanatory variables of the distribution of y, such as a regression function, and treating it as a conditional expectation is central to its identification and estimation. However, the interpretation of mu* as a conditional expectation breaks down if some or all of the explanatory variables are endogenous. This is not a problem when mu* is modelled as a parametric function of explanatory variables because it is well known how instrumental variables techniques can be used to identify and estimate mu*. In contrast, handling endogenous regressors in nonparametric models, where mu* is regarded as fully unknown, presents dicult theoretical and practical challenges. In this paper we consider an endogenous nonparametric model based on a conditional moment restriction. We investigate identification related properties of this model when the unknown function mu* belongs to a linear space. We also investigate underidentification of mu* along with the identification of its linear functionals. Several examples are provided in order to develop intuition about identification and estimation for endogenous nonparametric regression and related models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a novel technique for identifying logically related sections of the heap such as recursive data structures, objects that are part of the same multi-component structure, and related groups of objects stored in the same collection/array. When combined withthe lifetime properties of these structures, this information can be used to drive a range of program optimizations including pool allocation, object co-location, static deallocation, and region-based garbage collection. The technique outlined in this paper also improves the efficiency of the static analysis by providing a normal form for the abstract models (speeding the convergence of the static analysis). We focus on two techniques for grouping parts of the heap. The first is a technique for precisely identifying recursive data structures in object-oriented programs based on the types declared in the program. The second technique is a novel method for grouping objects that make up the same composite structure and that allows us to partition the objects stored in a collection/array into groups based on a similarity relation. We provide a parametric component in the similarity relation in order to support specific analysis applications (such as a numeric analysis which would need to partition the objects based on numeric properties of the fields). Using the Barnes-Hut benchmark from the JOlden suite we show how these grouping methods can be used to identify various types of logical structures allowing the application of many region-based program optimizations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes). This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge. First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors. After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations). Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram. Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system. Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, 103 unrelated South-American patients with mucopolysaccharidosis type II (MPS II) were investigated aiming at the identification of iduronate-2-sulfatase (IDS) disease causing mutations and the possibility of some insights on the genotype-phenotype correlation The strategy used for genotyping involved the identification of the previously reported inversion/disruption of the IDS gene by PCR and screening for other mutations by PCR/SSCP. The exons with altered mobility on SSCP were sequenced, as well as all the exons of patients with no SSCP alteration. By using this strategy, we were able to find the pathogenic mutation in all patients. Alterations such as inversion/disruption and partial/total deletions of the IDS gene were found in 20/103 (19%) patients. Small insertions/deletions/indels (<22 bp) and point mutations were identified in 83/103 (88%) patients, including 30 novel mutations; except for a higher frequency of small duplications in relation to small deletions, the frequencies of major and minor alterations found in our sample are in accordance with those described in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor B (NF-B), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Balsamic vinegar (BV) is a typical and valuable Italian product, worldwide appreciated thanks to its characteristic flavors and potential health benefits. Several studies have been conducted to assess physicochemical and microbial compositions of BV, as well as its beneficial properties. Due to highly-disseminated claims of antioxidant, antihypertensive and antiglycemic properties, BV is a known target for frauds and adulterations. For that matter, product authentication, certifying its origin (region or country) and thus the processing conditions, is becoming a growing concern. Striving for fraud reduction as well as quality and safety assurance, reliable analytical strategies to rapidly evaluate BV quality are very interesting, also from an economical point of view. This work employs silica plate laser desorption/ionization mass spectrometry (SP-LDI-MS) for fast chemical profiling of commercial BV samples with protected geographical indication (PGI) and identification of its adulterated samples with low-priced vinegars, namely apple, alcohol and red/white wines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the evaluation of metals and (metallo)proteins in vitreous humor samples and their correlations with some biological aspects in different post-mortem intervals (1-7 days), taking into account both decomposing and non-decomposing bodies. After qualitative evaluation of the samples involving 26 elements, representative metal ions (Fe, Mg and Mo) are determined by inductively coupled plasma mass spectrometry after using mini-vial decomposition system for sample preparation. A significant trend for Fe is found with post-mortem time for decomposing bodies because of a significant increase of iron concentration when comparing samples from bodies presenting 3 and 7 days post-mortem interval. An important clue to elucidate the role of metals is the coupling of liquid chromatography with inductively coupled plasma mass spectrometry for identification of metals linked to proteins, as well as mass spectrometry for the identification of those proteins involved in the post-mortem interval.