804 resultados para parallel linkage robot


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Työ sisältää ohjaislaitteiston vertailun ja valinnan rinnakkaisrakenteista robottia varten sekä kunnonvalvontajärjestelmän periaatteiden laadinnan kyseistä robottia varten. Ohjauslaitteisto sisältää teollisuustietokoneen sekä kenttäväylän. Sekä tietokoneesta että väylästä on teoriaosuus ja yksityiskohtaisempi valintaosuus. Teoriaosuudessa selitetään tarkemmin laitteiden toimintaperiaatteista. Valintaosuudessa kerrotaanmiksi jokin tietty laite on valittu käytettäväksi robotin ohjauksessa. Kunnonvalvontateoria ja rinnakkaisrakenteisen robotin kunnonvalvonnan keinot ovat työn toinen osa. Teoriaosa sisältää yleisluonteisen selvityksen vikaantumisesta ja valvonnasta. Erikoisrobotin kunnonvalvonnan keinot esitetään työssä tietyssä järjestyksessä. Ensin esitetään mahdolliset vikatilanteet. Toisessa kohdassa havainnollistetaan vikojen havaitseminen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor-based robot control allows manipulation in dynamic environments with uncertainties. Vision is a versatile low-cost sensory modality, but low sample rate, high sensor delay and uncertain measurements limit its usability, especially in strongly dynamic environments. Force is a complementary sensory modality allowing accurate measurements of local object shape when a tooltip is in contact with the object. In multimodal sensor fusion, several sensors measuring different modalities are combined to give a more accurate estimate of the environment. As force and vision are fundamentally different sensory modalities not sharing a common representation, combining the information from these sensors is not straightforward. In this thesis, methods for fusing proprioception, force and vision together are proposed. Making assumptions of object shape and modeling the uncertainties of the sensors, the measurements can be fused together in an extended Kalman filter. The fusion of force and visual measurements makes it possible to estimate the pose of a moving target with an end-effector mounted moving camera at high rate and accuracy. The proposed approach takes the latency of the vision system into account explicitly, to provide high sample rate estimates. The estimates also allow a smooth transition from vision-based motion control to force control. The velocity of the end-effector can be controlled by estimating the distance to the target by vision and determining the velocity profile giving rapid approach and minimal force overshoot. Experiments with a 5-degree-of-freedom parallel hydraulic manipulator and a 6-degree-of-freedom serial manipulator show that integration of several sensor modalities can increase the accuracy of the measurements significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were carried out. It was demonstrated that the parallel robots are capable of holding all necessary machining tools and welding end-effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex especially in the case of the 10-DOF robot because of its redundant structure. Multibody dynamics simulations were carried out, ensuring sufficient stiffness during the robot motion. The entire design and testing processes of the robots appeared to be complex tasks due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well. The results offer not only devices but also a methodology for the assembly and repair of ITER by means of parallel robots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tool center point calibration is a known problem in industrial robotics. The major focus of academic research is to enhance the accuracy and repeatability of next generation robots. However, operators of currently available robots are working within the limits of the robot´s repeatability and require calibration methods suitable for these basic applications. This study was conducted in association with Stresstech Oy, which provides solutions for manufacturing quality control. Their sensor, based on the Barkhausen noise effect, requires accurate positioning. The accuracy requirement admits a tool center point calibration problem if measurements are executed with an industrial robot. Multiple possibilities are available in the market for automatic tool center point calibration. Manufacturers provide customized calibrators to most robot types and tools. With the handmade sensors and multiple robot types that Stresstech uses, this would require great deal of labor. This thesis introduces a calibration method that is suitable for all robots which have two digital input ports free. It functions with the traditional method of using a light barrier to detect the tool in the robot coordinate system. However, this method utilizes two parallel light barriers to simultaneously measure and detect the center axis of the tool. Rotations about two axes are defined with the center axis. The last rotation about the Z-axis is calculated for tools that have different width of X- and Y-axes. The results indicate that this method is suitable for calibrating the geometric tool center point of a Barkhausen noise sensor. In the repeatability tests, a standard deviation inside robot repeatability was acquired. The Barkhausen noise signal was also evaluated after recalibration and the results indicate correct calibration. However, future studies should be conducted using a more accurate manipulator, since the method employs the robot itself as a measuring device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods are developed for predicting vibration response characteristics of systems which change configuration during operation. A cartesian robot, an example of such a position-dependent system, served as a test case for these methods and was studied in detail. The chosen system model was formulated using the technique of Component Mode Synthesis (CMS). The model assumes that he system is slowly varying, and connects the carriages to each other and to the robot structure at the slowly varying connection points. The modal data required for each component is obtained experimentally in order to get a realistic model. The analysis results in prediction of vibrations that are produced by the inertia forces as well as gravity and friction forces which arise when the robot carriages move with some prescribed motion. Computer simulations and experimental determinations are conducted in order to calculate the vibrations at the robot end-effector. Comparisons are shown to validate the model in two ways: for fixed configuration the mode shapes and natural frequencies are examined, and then for changing configuration the residual vibration at the end of the mode is evaluated. A preliminary study was done on a geometrically nonlinear system which also has position-dependency. The system consisted of a flexible four-bar linkage with elastic input and output shafts. The behavior of the rocker-beam is analyzed for different boundary conditions to show how some limiting cases are obtained. A dimensional analysis leads to an evaluation of the consequences of dynamic similarity on the resulting vibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distributed method for mobile robot navigation, spatial learning, and path planning is presented. It is implemented on a sonar-based physical robot, Toto, consisting of three competence layers: 1) Low-level navigation: a collection of reflex-like rules resulting in emergent boundary-tracing. 2) Landmark detection: dynamically extracts landmarks from the robot's motion. 3) Map learning: constructs a distributed map of landmarks. The parallel implementation allows for localization in constant time. Spreading of activation computes both topological and physical shortest paths in linear time. The main issues addressed are: distributed, procedural, and qualitative representation and computation, emergent behaviors, dynamic landmarks, minimized communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transformation from high level task specification to low level motion control is a fundamental issue in sensorimotor control in animals and robots. This thesis develops a control scheme called virtual model control which addresses this issue. Virtual model control is a motion control language which uses simulations of imagined mechanical components to create forces, which are applied through joint torques, thereby creating the illusion that the components are connected to the robot. Due to the intuitive nature of this technique, designing a virtual model controller requires the same skills as designing the mechanism itself. A high level control system can be cascaded with the low level virtual model controller to modulate the parameters of the virtual mechanisms. Discrete commands from the high level controller would then result in fluid motion. An extension of Gardner's Partitioned Actuator Set Control method is developed. This method allows for the specification of constraints on the generalized forces which each serial path of a parallel mechanism can apply. Virtual model control has been applied to a bipedal walking robot. A simple algorithm utilizing a simple set of virtual components has successfully compelled the robot to walk eight consecutive steps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since robots are typically designed with an individual actuator at each joint, the control of these systems is often difficult and non-intuitive. This thesis explains a more intuitive control scheme called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control method by using it to control a simulated walking hexapod. Virtual Model Control uses imagined mechanical components to create virtual forces, which are applied through the joint torques of real actuators. This method produces a straightforward means of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this control scheme, the design of a virtual model controller is similar to the design of a controller with basic mechanical components. The ease of this control scheme facilitates the use of a high level control system which can be used above the low level virtual model controllers to modulate the parameters of the imaginary mechanical components. In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distribution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control method which allows for the specification of constrained degrees of freedom. This virtual model control technique was applied to a simulated hexapod robot. Although the hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control solutions to be used while the robot was walking. Using a simple linear control law, the robot walked while simultaneously balancing a pendulum and tracking an object.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A parallel processor architecture based on a communicating sequential processor chip, the transputer, is described. The architecture is easily linearly extensible to enable separate functions to be included in the controller. To demonstrate the power of the resulting controller some experimental results are presented comparing PID and full inverse dynamics on the first three joints of a Puma 560 robot. Also examined are some of the sample rate issues raised by the asynchronous updating of inertial parameters, and the need for full inverse dynamics at every sample interval is questioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multilocus digenic linkage disequilibria (LD) and their population structure were investigated in eleven landrace populations of barley (Hordeum vulgare ssp. vulgare L.) in Sardinia, using 134 dominant simple-sequence amplified polymorphism markers. The analysis of molecular variance for these markers indicated that the populations were partially differentiated (F ST = 0.18), and clustered into three geographic areas. Consistent with this population pattern, STRUCTURE analysis allocated individuals from a bulk of all populations into four genetic groups, and these groups also showed geographic patterns. In agreement with other molecular studies in barley, the general level of LD was low (13 % of locus pairs, with P < 0.01) in the bulk of 337 lines, and decayed steeply with map distance between markers. The partitioning of multilocus associations into various components indicated that genetic drift and founder effects played a major role in determining the overall genetic makeup of the diversity in these landrace populations, but that epistatic homogenising or diversifying selection was also present. Notably, the variance of the disequilibrium component was relatively high, which implies caution in the pooling of barley lines for association studies. Finally, we compared the analyses of multilocus structure in barley landrace populations with parallel analyses in both composite crosses of barley on the one hand and in natural populations of wild barley on the other. Neither of these serves as suitable mimics of landraces in barley, which require their own study. Overall, the results suggest that these populations can be exploited for LD mapping if population structure is controlled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Singularities of robot manipulators have been intensely studied in the last decades by researchers of many fields. Serial singularities produce some local loss of dexterity of the manipulator, therefore it might be desirable to search for singularityfree trajectories in the jointspace. On the other hand, parallel singularities are very dangerous for parallel manipulators, for they may provoke the local loss of platform control, and jeopardize the structural integrity of links or actuators. It is therefore utterly important to avoid parallel singularities, while operating a parallel machine. Furthermore, there might be some configurations of a parallel manipulators that are allowed by the constraints, but nevertheless are unreachable by any feasible path. The present work proposes a numerical procedure based upon Morse theory, an important branch of differential topology. Such procedure counts and identify the singularity-free regions that are cut by the singularity locus out of the configuration space, and the disjoint regions composing the configuration space of a parallel manipulator. Moreover, given any two configurations of a manipulator, a feasible or a singularity-free path connecting them can always be found, or it can be proved that none exists. Examples of applications to 3R and 6R serial manipulators, to 3UPS and 3UPU parallel wrists, to 3UPU parallel translational manipulators, and to 3RRR planar manipulators are reported in the work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parallel mechanisms show desirable characteristics such as a large payload to robot weight ratio, considerable stiffness, low inertia and high dynamic performances. In particular, parallel manipulators with fewer than six degrees of freedom have recently attracted researchers’ attention, as their employ may prove valuable in those applications in which a higher mobility is uncalled-for. The attention of this dissertation is focused on translational parallel manipulators (TPMs), that is on parallel manipulators whose output link (platform) is provided with a pure translational motion with respect to the frame. The first part deals with the general problem of the topological synthesis and classification of TPMs, that is it identifies the architectures that TPM legs must possess for the platform to be able to freely translate in space without altering its orientation. The second part studies both constraint and direct singularities of TPMs. In particular, special families of fully-isotropic mechanisms are identified. Such manipulators exhibit outstanding properties, as they are free from singularities and show a constant orthogonal Jacobian matrix throughout their workspace. As a consequence, both the direct and the inverse position problems are linear and the kinematic analysis proves straightforward.