843 resultados para pacs: expert systems and other ai software and techniques
Resumo:
The thesis presents an account of an attempt to utilize expert systems within the domain of production planning and control. The use of expert systems was proposed due to the problematical nature of a particular function within British Steel Strip Products' Operations Department: the function of Order Allocation, allocating customer orders to a production week and site. Approaches to tackling problems within production planning and control are reviewed, as are the general capabilities of expert systems. The conclusions drawn are that the domain of production planning and control contains both `soft' and `hard' problems, and that while expert systems appear to be a useful technology for this domain, this usefulness has by no means yet been demonstrated. Also, it is argued that the main stream methodology for developing expert systems is unsuited for the domain. A problem-driven approach is developed and used to tackle the Order Allocation function. The resulting system, UAAMS, contained two expert components. One of these, the scheduling procedure was not fully implemented due to inadequate software. The second expert component, the product routing procedure, was untroubled by such difficulties, though it was unusable on its own; thus a second system was developed. This system, MICRO-X10, duplicated the function of X10, a complex database query routine used daily by Order Allocation. A prototype version of MICRO-X10 proved too slow to be useful but allowed implementation and maintenance issues to be analysed. In conclusion, the usefulness of the problem-driven approach to expert systems development within production planning and control is demonstrated but restrictions imposed by current expert system software are highlighted in that the abilities of such software to cope with `hard' scheduling constructs and also the slow processing speeds of such software can restrict the current usefulness of expert systems within production planning and control.
Resumo:
Systemized analysis of trends towards integration and hybridization in contemporary expert systems is conducted, and a particular class of applied expert systems, integrated expert systems, is considered. For this purpose, terminology, classification, and models, proposed by the author, are employed. As examples of integrated expert systems, Russian systems designed in this field and available to the majority of specialists are analyzed.
Resumo:
Objectives: Experiential knowledge of elite athletes and coaches was investigated to reveal insights on expertise acquisition in cricket fast bowling. Design: Twenty-one past or present elite cricket fast bowlers and coaches of national or international level were interviewed using an in-depth, open-ended, semi-structured approach. Methods: Participants were asked about specific factors which they believed were markers of fast bowling expertise potential. Of specific interest was the relative importance of each potential component of fast bowling expertise and how components interacted or developed over time. Results: The importance of intrinsic motivation early in development was highlighted, along with physical, psychological and technical attributes. Results supported a multiplicative and interactive complex systems model of talent development in fast bowling, in which component weightings were varied due to individual differences in potential experts. Dropout rates in potential experts were attributed to misconceived current talent identification programmes and coaching practices, early maturation and physical attributes, injuries and lack of key psychological attributes and skills. Conclusions: Data are consistent with a dynamical systems model of expertise acquisition in fast bowling, with numerous trajectories available for talent development. Further work is needed to relate experiential and theoretical knowledge on expertise in other sports.
Resumo:
info:eu-repo/semantics/published
Resumo:
Expert supervision systems are software applications specially designed to automate process monitoring. The goal is to reduce the dependency on human operators to assure the correct operation of a process including faulty situations. Construction of this kind of application involves an important task of design and development in order to represent and to manipulate process data and behaviour at different degrees of abstraction for interfacing with data acquisition systems connected to the process. This is an open problem that becomes more complex with the number of variables, parameters and relations to account for the complexity of the process. Multiple specialised modules tuned to solve simpler tasks that operate under a co-ordination provide a solution. A modular architecture based on concepts of software agents, taking advantage of the integration of diverse knowledge-based techniques, is proposed for this purpose. The components (software agents, communication mechanisms and perception/action mechanisms) are based on ICa (Intelligent Control architecture), software middleware supporting the build-up of applications with software agent features
Resumo:
This article describes the integration of the LSD (Logic for Structure Determination) and SISTEMAT expert systems that were both designed for the computer-assisted structure elucidation of small organic molecules. A first step has been achieved towards the linking of the SISTEMAT database with the LSD structure generator. The skeletal descriptions found by the SISTEMAT programs are now easily transferred to LSD as substructural constraints. Examples of the synergy between these expert systems are given for recently reported natural products.
Resumo:
Sustainable computer systems require some flexibility to adapt to environmental unpredictable changes. A solution lies in autonomous software agents which can adapt autonomously to their environments. Though autonomy allows agents to decide which behavior to adopt, a disadvantage is a lack of control, and as a side effect even untrustworthiness: we want to keep some control over such autonomous agents. How to control autonomous agents while respecting their autonomy? A solution is to regulate agents’ behavior by norms. The normative paradigm makes it possible to control autonomous agents while respecting their autonomy, limiting untrustworthiness and augmenting system compliance. It can also facilitate the design of the system, for example, by regulating the coordination among agents. However, an autonomous agent will follow norms or violate them in some conditions. What are the conditions in which a norm is binding upon an agent? While autonomy is regarded as the driving force behind the normative paradigm, cognitive agents provide a basis for modeling the bindingness of norms. In order to cope with the complexity of the modeling of cognitive agents and normative bindingness, we adopt an intentional stance. Since agents are embedded into a dynamic environment, things may not pass at the same instant. Accordingly, our cognitive model is extended to account for some temporal aspects. Special attention is given to the temporal peculiarities of the legal domain such as, among others, the time in force and the time in efficacy of provisions. Some types of normative modifications are also discussed in the framework. It is noteworthy that our temporal account of legal reasoning is integrated to our commonsense temporal account of cognition. As our intention is to build sustainable reasoning systems running unpredictable environment, we adopt a declarative representation of knowledge. A declarative representation of norms will make it easier to update their system representation, thus facilitating system maintenance; and to improve system transparency, thus easing system governance. Since agents are bounded and are embedded into unpredictable environments, and since conflicts may appear amongst mental states and norms, agent reasoning has to be defeasible, i.e. new pieces of information can invalidate formerly derivable conclusions. In this dissertation, our model is formalized into a non-monotonic logic, namely into a temporal modal defeasible logic, in order to account for the interactions between normative systems and software cognitive agents.
Resumo:
Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types.