199 resultados para ornitine decarboxylase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is a highly regulated enzyme. Methodology and Results: To use this enzyme as a potential drug target, the gene encoding putative ornithine decarboxylase (ODC)-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA sequence analysis revealed an open reading frame (ORF) of similar to 1,242 bp encoding a putative protein of 413 amino acids with a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa) from E. histolytica was heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of anticipated size similar to 46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by the substitution of three amino acids-aspartate-332, aspartate-361, and tyrosine-323-by histidine-296, phenylalanine-305, and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E. histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel substrate specificity. Conclusion: To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from E. histolytica. Computer modeling revealed that three of the critical residues required for binding of DFMO to the ODC enzyme are substituted in E. histolytica, resulting in the likely loss of interactions between the enzyme and DFMO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of FSH to stimulate the activity of ornithine decarboxylase (ODC) in the ovary of the immature rat and cycling hamster has been examined using specific antisera to gonadotropins. The stimulatory effect of FSH on ODC activity in the ovary of the immature rat was abolished when LH antiserum was administered along with FSH, while similar administration of FSH antiserum had no effect on LH action in stimulating ODC activity, thereby demonstrating the specificity of the LH effect. During the estrus cycle of the hamster, ODC activity in the ovary could be detected only on the evening of proestrus, the maximal activity seen at 1700 h being associated with both the Graafian follicles and the rest of the ovarian tissue. Neutralization of the proestrous FSH surge had no effect on the activity of ODC in either of these tissues, while similar administration of LH antiserum at 1300 h of proestrus completely inhibited the ODC activity in both large follicles and the rest of the ovarian tissue. Thus, the surge of LH, but not of FSH, appears to be responsible for regulating the ODC activity in the ovary of the cycling hamster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenyl and phenolic acids are known to inhibit metabolism of mevalonate in rat brain. The site of inhibition has been found to be mevalonate-5-pyrophosphate decarboxylase. Phenolic acids also inhibited mevalonate-5-phosphate kinase on preincubation. The kinetics showed that p-coumaric acid and isoferulic acid were competing with substrates, mevalonate-5-phosphate or mevalonate-5-pyre phosphate, whereas others showed an uncompetitive type of inhibition. Chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. An improved method for the synthesis of mevalonate-5-phosphate and mevalonate-5-pyrophosphate, labeled at carbon-1, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of ornithine decarboxylase elicited in response to nerve-growth factor in target organs is greatly decreased by preincubation of these tissues with cytoskeletal poisons such as vinblastine, diamide, cytochalasin B and colchicine. These results are interpreted as evidence for the involvement of receptor-associated cytoskeletal structures in mediating the nerve-growth-factor-specific induction of ornithine decarboxylase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Mevalonate pyrophosphate decarboxylase of rat liver is inhibited by various phenyl and phenolic acids. 2. Some of the phenyl and phenolic acids also inhibited mevalonate phosphate kinase. 3. Compounds with the phenyl-vinyl structure were more effective. 4. Kinetic studies showed that some of the phenolic acids compete with the substrates, mevalonate 5-phosphate and mevalonate 5-pyrophosphate, whereas others inhibit umcompetitively. 5. Dihydroxyphenyl and trihydroxyphenyl compounds and p-chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. 6. Of the three mevalonate-metabolizing enzymes, mevalonate pyrophosphate decarboxylase has the lowest specific activity and is probably the rate-determining step in this part of the pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of ornithine decarboxylase elicited in response to nerve-growth factor in target organs is greatly decreased by preincubation of these tissues with cytoskeletal poisons such as vinblastine, diamide, cytochalasin B and colchicine. These results are interpreted as evidence for the involvement of receptor-associated cytoskeletal structures in mediating the nerve-growth-factor-specific induction of ornithine decarboxylase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2,3-Dihydroxybenzoic acid decarboxylase inAspergillus niger was induced by many substrate analogs including salicylate and gentisate. Catechol, which is the product, induced the enzyme tenfold. The purified enzyme was competitively inhibited by manyortho substituted benzoic acids. The Ki values for salicylate,o-fluoro ando-chloro benzoic acids were 0.12 mM, 0.12 mM, and 0.13 mM respectively; these values were lower than the Km value for the substrate. As the size of the group in theortho position increased, as in the case of bromo- and iodo-derivatives, there was an increase in their Ki values. The C-2 hydroxyl group was essential both for the induction and for interaction with the enzyme. The C-3 hydroxyl group was not necessary for induction or inhibition, but it might be essential for the catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-oxidative decarboxylation of aromatic acids is a poorly understood reaction. The transformation of 2,3-dihydroxybenzoic acid to catechol in the fungal metabolism of indole is a prototype of such a reaction. 2,3-Dihydroxybenzoic acid decarboxylase (EC 4.1.1.46) which catalyzes this reaction was purified to homogeneity from anthranilate induced cultures of Aspergillus oryzae using affinity chromatography. The enzyme did not require cofactors like NAD(+), PLP, TPP or metal ions for its activity. There was no spectral evidence for the presence of enzyme bound cofactors. The preparation, which was adjudged homogeneous by the criteria of SDS-PAGE, sedimentation analysis and N-terminal analysis, was characterized for its physicochemical and kinetic parameters. The enzyme was inactivated by group-specific modifiers like diethyl pyrocarbonate (DEPC) and N-ethylmaleimide (NEM). The kinetics of inactivation by DEPC suggested the presence of a single class of essential histidine residues, the second order rate constant of inactivation for which was 12.5 M(-1) min(-1). A single class of cysteine residues was modified by NEM with a second order rate constant of 33 M(-1) min(-1). Substrate analogues protected the enzyme against inactivation by both DEPC and NEM, suggesting the Location of the essential histidine and cysteine to be at the active site of the enzyme. The incorporation of radiolabelled NEM in a differential labelling experiment was 0.73 mol per mol subunit confirming the presence of a single essential cysteine per active-site. Differentially labelled enzyme was enzymatically cleaved and the peptide bearing the label was purified and sequenced. The active-site peptide LLGLAETCK and the N-terminal sequence MLGKIALEEAFALPRFEEKT did not bear any similarity to sequences reported in the Swiss-Prot Protein Sequence Databank, a reflection probably of the unique primary structure of this novel enzyme. The sequences reported in this study will appear in the Swiss-Prot Protein Sequence Databank under the accession number P80402.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxalate decarboxylases (OXDCs) (E.C. 4.1.1.2) are enzymes catalyzing the conversion of oxalate to formate and CO2. The OXDCs found in fungi and bacteria belong to a functionally diverse protein superfamily known as the cupins. Fungi-originated OXDCs are secretory enzymes. However, most bacterial OXDCs are localized in the cytosol, and may be involved in energy metabolism. In Agrobacterium tumefaciens C58, a locus for a putative oxalate decarboxylase is present. In the study reported here, an enzyme was overexpressed in Escherichia coli and showed oxalate decarboxylase activity. Computational analysis revealed the A. tumefaciens C58 OXDC contains a signal peptide mediating translocation of the enzyme into the periplasm that was supported by expression of signal-peptideless and full-length versions of the enzyme in A. tumefaciens C58. Further site-directed mutagenesis experiment demonstrated that the A. tumefaciens C58 OXDC is most likely translocated by a twin-arginine translocation (TAT) system.