960 resultados para organic ionic plastic crystals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant progress has been made recently in the development of Organic Ionic Plastic Crystals (OIPCs), a unique family of solid state electrolytes with applications in electrochemical devices such as lithium batteries and dye-sensitised solar cells. The negligible volatility of OIPCs renders them more suitable than molecular species for long-term device use, while the high thermal and electrochemical stability of many OIPCs fulfils an essential requirement for solid state electrolytes for many device applications. However, the complex mechanisms of conduction through these materials, both in their pure state and in the presence of a small amount of a second component (such as lithium salts to enable their use in lithium batteries) are still not fully understood. At the same time, the range of anions and cations utilised in the synthesis of plastic crystal phases continues to increase. This perspective concentrates on recent research into both fundamental and device-oriented aspects of these materials. Important fundamental understanding of the physical properties and transport mechanisms of different OIPCs has been achieved through use of techniques including variable temperature solid-state NMR and crystallographic analysis, as well as detailed molecular dynamics simulations. In parallel, the applicability of these materials as electrolytes for dye-sensitised solar cells and lithium batteries is being more widely demonstrated. The possibility of using OIPCs as solid state electrolytes for fuel cells is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Choline dihydrogen phosphate ([N1.1.1.2OH]DHP) and 1-butyl-3-methylimidazolium dihydrogen phosphate ([C4mim]DHP) were synthesized as a new class of proton-conducting ionic plastic crystals. Both [N1.1.1.2OH]DHP and [C4mim]DHP showed solid–solid phase transition(s) and showed a final entropy of fusion lower than 20 J K−1 mol−1 which is consistent with Timmerman’s criterion for molecular plastic crystals. The ionic conductivity of [N1.1.1.2OH]DHP was in the range of 10−6 S cm−1–10−3 S cm−1 in the plastic crystalline phase. On the other hand, the ionic conductivity of [C4mim]DHP showed about 10−5 S cm−1 in the plastic crystalline phase. [N1.1.1.2OH]DHP showed one order of magnitude higher ionic conductivity than [C4mim]DHP in the temperature range where the plastic phase is stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) are attractive as solid-state electrolytes for electrochemical devices such as lithium-ion batteries and solar and fuel cells. OIPCs offer high ionic conductivity, nonflammability, and versatility of molecular design. Nevertheless, intrinsic ion transport behavior of OIPCs is not fully understood, and their measured properties depend heavily on thermal history. Solid-state magnetic resonance imaging experiments reveal a striking image contrast anisotropy sensitive to the orientation of grain boundaries in polycrystalline OIPCs. Probing triethyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1222FSI) samples with different thermal history demonstrates vast variations in microcrystallite alignment. Upon slow cooling from the melt, microcrystallites exhibit a preferred orientation throughout the entire sample, leading to an order of magnitude increase in conductivity as probed using impedance spectroscopy. This investigation describes both a new conceptual window and a new characterization method for understanding polycrystalline domain structure and transport in plastic crystals and other solid-state conductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal and mechanical properties of the ionic plastic crystal N-methyl-N-propylpyrrolidinium hexafluorophosphate have been investigated and the effect of adding a miscible polymer on the mechanical properties is reported. The physical properties of the pure plastic crystal are discussed in detail and for the first time the change in volume with temperature for an organic ionic plastic crystal is reported. An increase in volume in conjunction with increased conductivity supports the hypothesis that ion conduction within the plastic crystal proceeds via defects. For phase I and melting, the magnitude of the volume increase does not appear to be in accord with the subtle change in conductivity. This is suggested to be due to the presence of layer defects, which allow for correlated ionic motion, which does not increase the conductivity. Addition of polymer to the plastic crystal significantly increases the mechanical strength, decreases the conductivity, but has little effect on the phase behaviour, further supporting the hypothesis of vacancy-mediated conduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doping lithium bis(trifluoromethanesulfonyl)amide (Li[NTf2]) into the N-ethyl,N′-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) plastic crystal material has previously indicated order of magnitude enhancements in ion transport and conductivity over pure [C2mpyr][NTf2]. Recently, conductivity enhancements in this ionic plastic crystal induced by SiO2 nanoparticles have also been reported. In this work the inclusion of SiO2 nanoparticles in Li ion doped [C2mpyr][NTf2] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, positron annihilation lifetime spectroscopy (PALS), Raman spectroscopy, NMR spectroscopy and scanning electron microscopy (SEM). Solid state 1H NMR indicates that the addition of the nanoparticles increases the mobility of the [C2mpyr] cation and positron lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion, especially with 10 wt% SiO2. Thus, the substantial drop in ion conductivity observed for this doped nanocomposite material was surprising. This decrease is most likely due to the decrease in mobility of the [NTf2] anion, possibly by its adsorption at the SiO2/grain boundary interface and concomitant decrease in mobility of the Li ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addition of silica nanoparticles functionalised with lithium propane sulfonate to the organic ionic plastic crystal N-ethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) results in a significant increase in ionic conductivity. Analysis of these nanocomposites by impedance spectroscopy, NMR, positron annihilation lifetime spectroscopy (PALS) and Raman spectroscopy suggests that this is the result of higher matrix mobility due to an increase in defect size and concentration. The effect of these functionalised nanoparticles is compared to that previously observed for unfunctionalised nanoparticles in the lithium-doped and pure plastic crystal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of N,N-dimethylpyrrolidinium tetrafluoroborate by 1H and 11B NMR, Raman spectroscopy and powder XRD shows that this organic ionic plastic crystal material exhibits unusual phase behaviour. 1H NMR analysis indicates that the mobility of the pyrrolidinium cation decreases when the material is heated into phase I, while the X-ray diffraction pattern changes from a simple, one peak structure in phase II to a more complex pattern in phase I. The possible origins of these unusual transitions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic ionic plastic crystal material N,N-dimethyl pyrrolidinium tetrafluoroborate ([C1mpyr][BF4]) has been mixed with LiBF4 from 0 to 8 wt% and shown to exhibit enhanced ionic conductivity, especially in the higher temperature plastic crystal phases (phases II and I). The materials retain their solid state well above 100 °C with the melt not being observed up to 300 °C. Interestingly the conductivity enhancement is highest with the lowest level of LiBF4 addition in phase II, but then the order of enhancement is reversed in phase I. In all cases, a conductivity drop is observed at the II → I phase transition (105 °C) which is associated with increased order in the pure matrix, as previously reported, although the conductivity drop is least for the highest LiBF4 amount (8 wt%). The 8 wt% sample displays different conductivity behaviours compared to the lower LiBF4 concentrations, with a sharp increase above 50 °C, which is apparently not related to the formation of an amorphous phase, based on XRD data up to 120 °C. Symmetric cells, Li/OIPC/Li, were prepared and cycled at 50 °C and showed evidence of significant preconditioning with continued cycling, leading to a lower over-potential and a concomitant decrease in the cell resistivity as measured by EIS. An SEM investigation of the Li/OIPC interfaces before and after cycling suggested significant grain refinement was responsible for the decrease in cell resistance upon cycling, possibly as a result of an increased grain boundary phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel organic ionic plastic crystal (OIPC) electrolyte based on a quaternary ammonium cation and the triflate anion has been synthesized, which shows fast proton transport and high thermal stability in the solid state when doped with triflic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dye-sensitized solar cells are an increasingly promising alternative to conventional silicon solar cells as a method of converting solar energy to electricity and thus providing an effectively inexhaustible energy source. However, the most efficient of these devices currently utilize liquid electrolytes, which suffer from the associated problems of leakage and evaporation. Hence, significant research is currently focused on the development of solid state alternatives. Here we report a new class of solid state electrolyte for these devices, organic ionic plastic crystal electrolytes, that allow relatively rapid diffusion of the redox couple through the matrix, which is critical to the cell performance. A range of different organic ionic plastic crystal materials, utilizing different cation and anion structures, have been investigated and the conductivities, diffusion rates and photovoltaic performance of the electrolytes are reported. The best material, utilizing the dicyanamide anion, achieves efficiencies of more than 5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All solid-state organic ionic plastic crystal–polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10’s lms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material.