998 resultados para nuclear shape
Resumo:
Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-alpha-N-trifluoroacetylgalactosamine (Me alpha NTFAGalN) and methyl-beta-tifluoroacetylgalactosamine (Me beta NTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and Me beta NTFAGalN, and 0.01-ppm chemical shift change for Me alpha NTFAGalN, demonstrate that the Me alpha NTFAGalN has a sufficiently long residence time on the protein binding site as compared to Me beta NTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of alpha and beta anomers of NTFAGalN and Me alpha NTFAGalN is controlled enthalpically, while that of Me beta NTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the Me beta NTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.
Resumo:
Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state C-13 NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
Magnetic resonance techniques have given us a powerful means for investigating dynamical processes in gases, liquids and solids. Dynamical effects manifest themselves in both resonance line shifts and linewidths, and, accordingly, require detailed analyses to extract desired information. The success of a magnetic resonance experiment depends critically on relaxation mechanisms to maintain thermal equilibrium between spin states. Consequently, there must be an interaction between the excited spin states and their immediate molecular environment which promote changes in spin orientation while excess magnetic energy is coupled into other degrees of freedom by non-radiative processes. This is well known as spin-lattice relaxation. Certain dynamical processes cause fluctuations in the spin state energy levels leading to spin-spin relaxation and, here again, the environment at the molecular level plays a significant role in the magnitude of interaction. Relatively few electron spin relaxation studies of solutions have been conducted and the present work is addressed toward the extension of our knowledge in this area and the retrieval of dynamical information from line shape analyses on a time scale comparable to diffusion controlled phenomena.
Specifically, the electron spin relaxation of three Mn+23d5 complexes, Mn(CH3CN)6+2, MnCl4-2 in acetonitrile has been studied in considerable detail. The effective spin Hamiltonian constants were carefully evaluated under a wide range of experimental conditions. Resonance widths of these Mn+2 complexes were studied in the presence of various excess ligand ions and as a function of concentration, viscosity, temperature and frequency (X-band, ~9.5 Ԍ Hz and K-band, ~35 Ԍ Hz).
A number of interesting conclusions were drawn from these studies. For the Et4NCl-4-2 system several relaxation mechanisms leading to resonance broadening were observed. One source appears to arise through spin-orbit interactions caused by modulation of the ligand field resulting from transient distortions of the complex imparted by solvent fluctuations in the immediate surroundings of the paramagnetic ion. An additional spin relaxation was assigned to the formation of ion pairs [Et4N+…MnCl4-2] and it was possible to estimate the dissociation constant for this specie in acetonitrile.
The Bu4NBr-MnBr4-2 study was considerably more interesting. As in the former case, solvent fluctuations and ion-pairing of the paramagnetic complex [Bu4N+…MnBr4-2] provide significant relaxation for the electronic spin system. Most interesting, without doubt, is the onset of a new relaxation mechanism leading to resonance broadening which is best interpreted as chemical exchange. Thus, assuming that resonance widths were simply governed by electron spin state lifetimes, we were able to extract dynamical information from an interaction in which the initial and final states are the same
MnBr4-2 + Br- = MnBr4-2 + Br-.
The bimolecular rate constants were obtained at six different temperatures and their magnitudes suggested that the exchange is probably diffusion controlled with essentially a zero energy of activation. The most important source of spin relaxation in this system stems directly from dipolar interactions between the manganese 3d5 electrons. Moreover, the dipolar broadening is strongly frequency dependent indicating a deviation between the transverse and longitudinal relaxation times. We are led to the conclusion that the 3d5 spin states of ion-paired MnBr4-2 are significantly correlated so that dynamical processes are also entering the picture. It was possible to estimate the correlation time, Td, characterizing this dynamical process.
In Part II we study nuclear magnetic relaxation of bromine ions in the MnBr4-2-Bu4NBr-acetonitrile system. Essentially we monitor the 79Br and 81Br linewidths in response to the [MnBr4-2]/[Br-] ratio with the express purpose of supporting our contention that exchange is occurring between "free" bromine ions in the solvent and bromine in the first coordination sphere of the paramagnetic anion. The complexity of the system elicited a two-part study: (1) the linewidth behavior of Bu4NBr in anhydrous CH3CN in the absence of MnBr4-2 and (2) in the presence of MnBr4-2. It was concluded in study (1) that dynamical association, Bu4NBr k1= Bu4N+ + Br-, was modulating field-gradient interactions at frequencies high enough to provide an estimation of the unimolecular rate constant, k1. A comparison of the two isotopic bromine linewidth-mole fraction results led to the conclusion that quadrupole interactions provided the dominant relaxation mechanism. In study (2) the "residual" bromine linewidths for both 79Br and 81Br are clearly controlled by quadrupole interactions which appear to be modulated by very rapid dynamical processes other than molecular reorientation. We conclude that the "residual" linewidth has its origin in chemical exchange and that bromine nuclei exchange rapidly between a "free" solvated ion and the paramagnetic complex, MnBr4-2.
Resumo:
Part I.
The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written
HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”
Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.
The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.
Part II.
The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:
F/Caa = -1.0 ± 0.5 kHz
F/Cbb = -2.7 ± 0.2 kHz
F/Ccc = -1.9 ± 0.1 kHz
From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ” - σ⊥, is +160 ± 30 ppm.
Resumo:
The role of configuration mixing in the Pt region is investigated. For this chain of isotopes, the nature of the ground state changes smoothly, being spherical around mass A~174 and A~192 and deformed around the midshell N=104 region. This has a dramatic effect on the systematics of the energy spectra as compared to the systematics in the Pb and Hg nuclei. Interacting boson model with configuration mixing calculations are presented for gyromagnetic factors, α-decay hindrance factors, and isotope shifts. The necessity of incorporating intruder configurations to obtain an accurate description of the latter properties becomes evident. © 2011 American Physical Society.
Resumo:
Research on fusion fast ignition (FI) initiated by laser-driven ion beams has made substantial progress in the last years. Compared with electrons, FI based on a beam of quasi-monoenergetic ions has the advantage of a more localized energy deposition, and stiffer particle transport, bringing the required total beam energy close to the theoretical minimum. Due to short pulse laser drive, the ion beam can easily deliver the 200 TW power required to ignite the compressed D-T fuel. In integrated calculations we recently simulated ion-based FI targets with high fusion gain targets and a proof of principle experiment [1]. These simulations identify three key requirements for the success of ion-driven fast ignition (IFI): (1) the generation of a sufficiently high-energetic ion beam (approximate to 400-500 MeV for C), with (2) less than 20% energy spread at (3) more than 10% conversion efficiency of laser to beam energy. Here we present for the first time new experimental results, demonstrating all three parameters in separate experiments. Using diamond nanotargets and ultrahigh contrast laser pulses we were able to demonstrate >500 MeV carbon ions, as well as carbon pulses with Delta E/E
Resumo:
Tradicionalment, la reproducció del mon real se'ns ha mostrat a traves d'imatges planes. Aquestes imatges se solien materialitzar mitjançant pintures sobre tela o be amb dibuixos. Avui, per sort, encara podem veure pintures fetes a ma, tot i que la majoria d'imatges s'adquireixen mitjançant càmeres, i es mostren directament a una audiència, com en el cinema, la televisió o exposicions de fotografies, o be son processades per un sistema computeritzat per tal d'obtenir un resultat en particular. Aquests processaments s'apliquen en camps com en el control de qualitat industrial o be en la recerca mes puntera en intel·ligència artificial. Aplicant algorismes de processament de nivell mitja es poden obtenir imatges 3D a partir d'imatges 2D, utilitzant tècniques ben conegudes anomenades Shape From X, on X es el mètode per obtenir la tercera dimensió, i varia en funció de la tècnica que s'utilitza a tal nalitat. Tot i que l'evolució cap a la càmera 3D va començar en els 90, cal que les tècniques per obtenir les formes tridimensionals siguin mes i mes acurades. Les aplicacions dels escàners 3D han augmentat considerablement en els darrers anys, especialment en camps com el lleure, diagnosi/cirurgia assistida, robòtica, etc. Una de les tècniques mes utilitzades per obtenir informació 3D d'una escena, es la triangulació, i mes concretament, la utilització d'escàners laser tridimensionals. Des de la seva aparició formal en publicacions científiques al 1971 [SS71], hi ha hagut contribucions per solucionar problemes inherents com ara la disminució d'oclusions, millora de la precisió, velocitat d'adquisició, descripció de la forma, etc. Tots i cadascun dels mètodes per obtenir punts 3D d'una escena te associat un procés de calibració, i aquest procés juga un paper decisiu en el rendiment d'un dispositiu d'adquisició tridimensional. La nalitat d'aquesta tesi es la d'abordar el problema de l'adquisició de forma 3D, des d'un punt de vista total, reportant un estat de l'art sobre escàners laser basats en triangulació, provant el funcionament i rendiment de diferents sistemes, i fent aportacions per millorar la precisió en la detecció del feix laser, especialment en condicions adverses, i solucionant el problema de la calibració a partir de mètodes geomètrics projectius.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Extensive systematizations of theoretical and experimental nuclear densities and of optical potential strengths extracted from heavy-ion elastic scattering data analyses at low and intermediate energies are presented. The energy-dependence of the nuclear potential is accounted for within a model based on the nonlocal nature of the interaction. The systematics indicates that the heavy-ion nuclear potential can be described in a simple global way through a double-folding shape, which basically depends only on the density of nucleons of the partners in the collision. The possibility of extracting information about the nucleon-nucleon interaction from the heavy-ion potential is investigated.
Resumo:
Prostatic lesions in Brazilian patients with benign prostatic hyperplasia (BPH, 26 cases) or adenocarcinoma (AC, 25 cases) were compared by qualitative microscopy and morphometric analysis. In 12 cases of BPH, prostate regions with no histological alterations were considered as controls (Ct). Archival material consisted of formalin-fixed, paraffin-embedded specimens obtained from prostatic transurethral resection and radical prostatectomy. Haematoxylin/eosin (HE)-stained sections were used to estimate the nuclear areas, perimeters and form factor values. HE-stained sections from AC specimens were also used for Gleason grading. BPH, AC and Ct could be discriminated by their nuclear areas and nuclear perimeters, but not by the nuclear form factor parameter. No significant differences were found when the AC data were compared using the combined version or the predominant grade version of the Gleason score (p = 0.8380 for nuclear area; p = 0.6076 for nuclear perimeter; p = 0.9202 for nuclear form factor; n = 200 nuclei per patient). This finding indicates that there is extensive heterogeneity in the size and shape of the nucleus in AC cells. These results also show that although the nuclear morphometry served to discriminate BPH and AC from each other and from Ct, it was not sufficient to correlate AC lesions with their respective Gleason scores in the human population analyzed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)