888 resultados para non-smooth dynamical systems
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper is concerned with closed orbits of non-smooth vector fields on the plane. For a class of non-smooth vector fields we provide necessary and sufficient conditions for the existence of closed poly-trajectorie. By means of a regularization process we prove that hyperbolic closed poly-trajectories are limit sets of a sequence of limit cycles of smooth vector fields. In our approach the Poincaré Index for non-smooth vector fields is introduced. © 2013 Springer Science+Business Media New York.
Resumo:
The aim of this paper is to show how principles of ecological psychology and dynamical systems theory can underpin a philosophy of coaching practice in a nonlinear pedagogy. Nonlinear pedagogy is based on a view of the human movement system as a nonlinear dynamical system. We demonstrate how this perspective of the human movement system can aid understanding of skill acquisition processes and underpin practice for sports coaches. We provide a description of nonlinear pedagogy followed by a consideration of some of the fundamental principles of ecological psychology and dynamical systems theory that underpin it as a coaching philosophy. We illustrate how each principle impacts on nonlinear pedagogical coaching practice, demonstrating how each principle can substantiate a framework for the coaching process.
Resumo:
During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and importance, mainly due to its demonstrated applications in numerous diverse and widespread fields in science and engineering. For example, fractional calculus has been successfully applied to problems in system biology, physics, chemistry and biochemistry, hydrology, medicine, and finance. In many cases these new fractional-order models are more adequate than the previously used integer-order models, because fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes that are governed by anomalous diffusion. Hence, there is a growing need to find the solution behaviour of these fractional differential equations. However, the analytic solutions of most fractional differential equations generally cannot be obtained. As a consequence, approximate and numerical techniques are playing an important role in identifying the solution behaviour of such fractional equations and exploring their applications. The main objective of this thesis is to develop new effective numerical methods and supporting analysis, based on the finite difference and finite element methods, for solving time, space and time-space fractional dynamical systems involving fractional derivatives in one and two spatial dimensions. A series of five published papers and one manuscript in preparation will be presented on the solution of the space fractional diffusion equation, space fractional advectiondispersion equation, time and space fractional diffusion equation, time and space fractional Fokker-Planck equation with a linear or non-linear source term, and fractional cable equation involving two time fractional derivatives, respectively. One important contribution of this thesis is the demonstration of how to choose different approximation techniques for different fractional derivatives. Special attention has been paid to the Riesz space fractional derivative, due to its important application in the field of groundwater flow, system biology and finance. We present three numerical methods to approximate the Riesz space fractional derivative, namely the L1/ L2-approximation method, the standard/shifted Gr¨unwald method, and the matrix transform method (MTM). The first two methods are based on the finite difference method, while the MTM allows discretisation in space using either the finite difference or finite element methods. Furthermore, we prove the equivalence of the Riesz fractional derivative and the fractional Laplacian operator under homogeneous Dirichlet boundary conditions – a result that had not previously been established. This result justifies the aforementioned use of the MTM to approximate the Riesz fractional derivative. After spatial discretisation, the time-space fractional partial differential equation is transformed into a system of fractional-in-time differential equations. We then investigate numerical methods to handle time fractional derivatives, be they Caputo type or Riemann-Liouville type. This leads to new methods utilising either finite difference strategies or the Laplace transform method for advancing the solution in time. The stability and convergence of our proposed numerical methods are also investigated. Numerical experiments are carried out in support of our theoretical analysis. We also emphasise that the numerical methods we develop are applicable for many other types of fractional partial differential equations.
Resumo:
Learning to rank from relevance judgment is an active research area. Itemwise score regression, pairwise preference satisfaction, and listwise structured learning are the major techniques in use. Listwise structured learning has been applied recently to optimize important non-decomposable ranking criteria like AUC (area under ROC curve) and MAP(mean average precision). We propose new, almost-lineartime algorithms to optimize for two other criteria widely used to evaluate search systems: MRR (mean reciprocal rank) and NDCG (normalized discounted cumulative gain)in the max-margin structured learning framework. We also demonstrate that, for different ranking criteria, one may need to use different feature maps. Search applications should not be optimized in favor of a single criterion, because they need to cater to a variety of queries. E.g., MRR is best for navigational queries, while NDCG is best for informational queries. A key contribution of this paper is to fold multiple ranking loss functions into a multi-criteria max-margin optimization.The result is a single, robust ranking model that is close to the best accuracy of learners trained on individual criteria. In fact, experiments over the popular LETOR and TREC data sets show that, contrary to conventional wisdom, a test criterion is often not best served by training with the same individual criterion.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov's transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
Using a Girsanov change of measures, we propose novel variations within a particle-filtering algorithm, as applied to the inverse problem of state and parameter estimations of nonlinear dynamical systems of engineering interest, toward weakly correcting for the linearization or integration errors that almost invariably occur whilst numerically propagating the process dynamics, typically governed by nonlinear stochastic differential equations (SDEs). Specifically, the correction for linearization, provided by the likelihood or the Radon-Nikodym derivative, is incorporated within the evolving flow in two steps. Once the likelihood, an exponential martingale, is split into a product of two factors, correction owing to the first factor is implemented via rejection sampling in the first step. The second factor, which is directly computable, is accounted for via two different schemes, one employing resampling and the other using a gain-weighted innovation term added to the drift field of the process dynamics thereby overcoming the problem of sample dispersion posed by resampling. The proposed strategies, employed as add-ons to existing particle filters, the bootstrap and auxiliary SIR filters in this work, are found to non-trivially improve the convergence and accuracy of the estimates and also yield reduced mean square errors of such estimates vis-a-vis those obtained through the parent-filtering schemes.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
Low-dimensional systems are constructed to investigate dynamics of vortex dislocations in a wake-type shear flow. High-resolution direct numerical simulations are employed to obtain flow snapshots from which the most energetic modes are extracted using proper orthogonal decomposition (POD). The first 10 modes are classified into two groups. One represents the general characteristics of two-dimensional wake-type shear flow, and the other is related to the three-dimensional properties or non-uniform characteristics along the span. Vortex dislocations are generated by these two kinds of coherent structures. The results from the first 20 three-dimensional POD modes show that the low- dimensional systems have captured the basic properties of the wake-type shear flow with vortex dislocation, such as two incommensurable frequencies and their beat frequency.
Resumo:
Vortex rings constitute the main structure in the wakes of a wide class of swimming and flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi. However, there is a physical limit, determined by an energy maximization principle called the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve. The existence of this limit is known to lead to the separation of a growing vortex ring from the shear layer feeding it, a process known as `vortex pinch-off', and characterized by the dimensionless vortex formation number. The goal of this thesis is to improve our understanding of vortex pinch-off as it relates to biological propulsion, and to provide future researchers with tools to assist in identifying and predicting pinch-off in biological flows.
To this end, we introduce a method for identifying pinch-off in starting jets using the Lagrangian coherent structures in the flow, and apply this criterion to an experimentally generated starting jet. Since most naturally occurring vortex rings are not circular, we extend the definition of the vortex formation number to include non-axisymmetric vortex rings, and find that the formation number for moderately non-axisymmetric vortices is similar to that of circular vortex rings. This suggests that naturally occurring vortex rings may be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex rings of increasing thickness and circulation, and their response to prolate shape perturbations is simulated using contour dynamics. Finally, the response of more realistic models for vortex rings, constructed from experimental data using nested contours, to perturbations which resemble those encountered by forming vortices more closely, is simulated using contour dynamics. In both families of models, a change in response analogous to pinch-off is found as members of the family with progressively thicker cores are considered. We posit that this analogy may be exploited to understand and predict pinch-off in complex biological flows, where current methods are not applicable in practice, and criteria based on the properties of vortex rings alone are necessary.
Resumo:
In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as ‘Casimir functionals’. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.
Resumo:
In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.
Resumo:
El propósito de esta tesis fue estudiar el rendimiento ofensivo de los equipos de balonmano de élite cuando se considera el balonmano como un sistema dinámico complejo no lineal. La perspectiva de análisis dinámica dependiente del tiempo fue adoptada para evaluar el rendimiento de los equipos durante el partido. La muestra general comprendió los 240 partidos jugados en la temporada 2011-2012 de la liga profesional masculina de balonmano de España (Liga ASOBAL). En el análisis posterior solo se consideraron los partidos ajustados (diferencia final de goles ≤ 5; n = 142). El estado del marcador, la localización del partido, el nivel de los oponentes y el periodo de juego fueron incorporados al análisis como variables situacionales. Tres estudios compusieron el núcleo de la tesis. En el primer estudio, analizamos la coordinación entre las series temporales que representan el proceso goleador a lo largo del partido de cada uno de los dos equipos que se enfrentan. Autocorrelaciones, correlaciones cruzadas, doble media móvil y transformada de Hilbert fueron usadas para el análisis. El proceso goleador de los equipos presentó una alta consistencia a lo largo de todos los partidos, así como fuertes modos de coordinación en fase en todos los contextos de juego. Las únicas diferencias se encontraron en relación al periodo de juego. La coordinación en los procesos goleadores de los equipos fue significativamente menor en el 1er y 2º periodo (0–10 min y 10–20 min), mostrando una clara coordinación creciente a medida que el partido avanzaba. Esto sugiere que son los 20 primeros minutos aquellos que rompen los partidos. En el segundo estudio, analizamos los efectos temporales (efecto inmediato, a corto y a medio plazo) de los tiempos muertos en el rendimiento goleador de los equipos. Modelos de regresión lineal múltiple fueron empleados para el análisis. Los resultados mostraron incrementos de 0.59, 1.40 y 1.85 goles para los periodos que comprenden la primera, tercera y quinta posesión de los equipos que pidieron el tiempo muerto. Inversamente, se encontraron efectos significativamente negativos para los equipos rivales, con decrementos de 0.50, 1.43 y 2.05 goles en los mismos periodos respectivamente. La influencia de las variables situacionales solo se registró en ciertos periodos de juego. Finalmente, en el tercer estudio, analizamos los efectos temporales de las exclusiones de los jugadores sobre el rendimiento goleador de los equipos, tanto para los equipos que sufren la exclusión (inferioridad numérica) como para los rivales (superioridad numérica). Se emplearon modelos de regresión lineal múltiple para el análisis. Los resultados mostraron efectos negativos significativos en el número de goles marcados por los equipos con un jugador menos, con decrementos de 0.25, 0.40, 0.61, 0.62 y 0.57 goles para los periodos que comprenden el primer, segundo, tercer, cuarto y quinto minutos previos y posteriores a la exclusión. Para los rivales, los resultados mostraron efectos positivos significativos, con incrementos de la misma magnitud en los mismos periodos. Esta tendencia no se vio afectada por el estado del marcador, localización del partido, nivel de los oponentes o periodo de juego. Los incrementos goleadores fueron menores de lo que se podría esperar de una superioridad numérica de 2 minutos. Diferentes teorías psicológicas como la paralización ante situaciones de presión donde se espera un gran rendimiento pueden ayudar a explicar este hecho. Los últimos capítulos de la tesis enumeran las conclusiones principales y presentan diferentes aplicaciones prácticas que surgen de los tres estudios. Por último, se presentan las limitaciones y futuras líneas de investigación. ABSTRACT The purpose of this thesis was to investigate the offensive performance of elite handball teams when considering handball as a complex non-linear dynamical system. The time-dependent dynamic approach was adopted to assess teams’ performance during the game. The overall sample comprised the 240 games played in the season 2011-2012 of men’s Spanish Professional Handball League (ASOBAL League). In the subsequent analyses, only close games (final goal-difference ≤ 5; n = 142) were considered. Match status, game location, quality of opposition, and game period situational variables were incorporated into the analysis. Three studies composed the core of the thesis. In the first study, we analyzed the game-scoring coordination between the time series representing the scoring processes of the two opposing teams throughout the game. Autocorrelation, cross-correlation, double moving average, and Hilbert transform were used for analysis. The scoring processes of the teams presented a high consistency across all the games as well as strong in-phase modes of coordination in all the game contexts. The only differences were found when controlling for the game period. The coordination in the scoring processes of the teams was significantly lower for the 1st and 2nd period (0–10 min and 10–20 min), showing a clear increasing coordination behavior as the game progressed. This suggests that the first 20 minutes are those that break the game-scoring. In the second study, we analyzed the temporal effects (immediate effect, short-term effect, and medium-term effect) of team timeouts on teams’ scoring performance. Multiple linear regression models were used for the analysis. The results showed increments of 0.59, 1.40 and 1.85 goals for the periods within the first, third and fifth timeout ball possessions for the teams that requested the timeout. Conversely, significant negative effects on goals scored were found for the opponent teams, with decrements of 0.59, 1.43 and 2.04 goals for the same periods, respectively. The influence of situational variables on the scoring performance was only registered in certain game periods. Finally, in the third study, we analyzed the players’ exclusions temporal effects on teams’ scoring performance, for the teams that suffer the exclusion (numerical inferiority) and for the opponents (numerical superiority). Multiple linear regression models were used for the analysis. The results showed significant negative effects on the number of goals scored for the teams with one less player, with decrements of 0.25, 0.40, 0.61, 0.62, and 0.57 goals for the periods within the previous and post one, two, three, four and five minutes of play. For the opponent teams, the results showed positive effects, with increments of the same magnitude in the same game periods. This trend was not affected by match status, game location, quality of opposition, or game period. The scoring increments were smaller than might be expected from a 2-minute numerical playing superiority. Psychological theories such as choking under pressure situations where good performance is expected could contribute to explain this finding. The final chapters of the thesis enumerate the main conclusions and underline the main practical applications that arise from the three studies. Lastly, limitations and future research directions are described.
Resumo:
Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.