985 resultados para neuromuscular function


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hamstring strain injuries (HSIs) are the most prevalent injury in a number of sports, and while anterior cruciate ligament (ACL) injuries are less common, they are far more severe and have long-term implications, such as an increased risk of developing osteoarthritis later in life. Given the high incidence and severity of these injuries, they are key targets of injury preventive programs in elite sport. Evidence has shown that a previous severe knee injury (including ACL injury) increases the risk of HSI; however, whether the functional deficits that occur after HSI result in an increased risk of ACL injury has yet to be considered. In this clinical commentary, we present evidence that suggests that the link between previous HSI and increased risk of ACL injury requires further investigation by drawing parallels between deficits in hamstring function after HSI and in women athletes, who are more prone to ACL injury than men athletes. Comparisons between the neuromuscular function of the male and female hamstring has shown that women display lower hamstring-to-quadriceps strength ratios during isokinetic knee flexion and extension, increased activation of the quadriceps compared with the hamstrings during a stop-jump landing task, a greater time required to reach maximal isokinetic hamstring torque, and lower integrated myoelectrical hamstring activity during a sidestep cutting maneuver. Somewhat similarly, in athletes with a history of HSI, the previously injured limb, compared with the uninjured limb, displays lower eccentric knee flexor strength, a lower hamstrings-to-quadriceps strength ratio, lower voluntary myoelectrical activity during maximal knee flexor eccentric contraction, a lower knee flexor eccentric rate of torque development, and lower voluntary myoelectrical activity during the initial portion of eccentric contraction. Given that the medial and lateral hamstrings have different actions at the knee joint in the coronal plane, which hamstring head is previously injured might also be expected to influence the likelihood of future ACL. Whether the deficits in function after HSI, as seen in laboratory-based studies, translate to deficits in hamstring function during typical injurious tasks for ACL injury has yet to be determined but should be a consideration for future work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research project evaluated the biomechanical and functional outcomes of patients following total knee replacement measured at 6 and 12 months following surgery. Using more objective measures, patients were examined to determine changes in biomechanical and neuromuscular function during performance of activities of daily living such as walking, stair climbing and turning. Adaptations in joint positioning and performance were identified and progressive improvements were made in some areas of locomotor function. The findings of the study provided important objective information to contribute to the design and evaluation of prostheses, new surgical and rehabilitation procedures and improved recovery of patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regular physical exercise provides many health benefits, protecting against the development of chronic diseases, and improving quality of life. Some of the mechanisms by which exercise provides these effects are the promotion of an anti-inflammatory state, reinforcement of the neuromuscular function, and activation of the hypothalamic–pituitary–adrenal (HPA) axis. Recently, it has been proposed that physical exercise is able to modify gut microbiota, and thus this could be another factor by which exercise promotes well-being, since gut microbiota appears to be closely related to health and disease. The purpose of this paper is to review the recent findings on gut microbiota modification by exercise, proposing several mechanisms by which physical exercise might cause changes in gut microbiota.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in assessing the recovery of neuromuscular function after nerve damage. In the present report, we describe the use of a basic EMG setup in our teaching laboratories to demonstrate some of these current applications. Our practical also illustrates some fundamental physiological and structural properties of nerves and muscles. Learning activities include 1) displaying the recruitment of muscle fibers with increasing force development; 2) the measurement of conduction velocity of motor nerves; 3) the assessment of reflex delay and demonstration of Jendrassik's maneuver; and 4) a Hoffman reflex experiment that illustrates the composition of mixed nerves and the differential excitability thresholds of fibers within the same nerve, thus aiding an understanding of the reflex nature of muscle control. We can set up the classes at various levels of inquiry depending on the needs/professional requirements of the class. The results can then provide an ideal platform for a discovery learning session/tutorial on how the central nervous system controls muscles, giving insights on how supraspinal control interacts with reflexes to give smooth, precise muscular activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vitamin D is important for bone metabolism and neuromuscular function. While a routine dosage is often proposed in osteoporotic patients, it is not so evident in rheumatology outpatients where it has been shown that the prevalence of hypovitaminosis D is high. The aim of the current study was to systematically evaluate the vitamin D status in our outpatient rheumatology population to define the severity of the problem according to rheumatologic diseases. During November 2009, all patients were offered a screening test for 25-OH vitamin D levels and categorised as deficient (<10 µg/l [ng/ml] [25 nmol/l]), insufficient (10 µg/l to 30 µg/l [25 to 75 nmol/l]) or normal (>30 µg/l [75 nmol/l]). A total of 272 patients were included. The mean 25-OH vitamin D level was 21 µg/l (range 1.5 to 45.9). A total of 20 patients had vitamin D deficiency, 215 patients had an insufficiency and 37 patients had normal results. In the group of patients with osteoporosis mean level of 25-OH vitamin D was 25 µg/l and 31% had normal results. In patients with inflammatory rheumatic diseases (N = 219), the mean level of 25-OH vitamin D was 20.5 µg/l, and only 12% had normal 25-OH vitamin D levels. In the small group of patients with degenerative disease (N = 33), the mean level of 25-OH vitamin D was 21.8 µg/l, and 21% had normal results. Insufficiency and deficiency were even seen in 38% of the patients who were taking supplements. These results confirm that hypovitaminosis D is highly prevalent in an outpatient population of rheumatology patients, affecting 86% of subjects. Despite oral supplementation (taken in 38% of our population), only a quarter of those on oral supplementation attained normal values of 25-OH vitamin D.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse effectuée en cotutelle (Université de Poitiers, France)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción El rocuronio es un relajante muscular utilizado en la práctica anestésica diaria en la que la dosis depende del peso corporal. Se ha demostrado que en el paciente obeso se debe calcular en base a el peso ideal y no al peso real; sin embargo, no hay claridad de como esto modifica el tiempo de latencia y recuperación del medicamento en esta población. Metodología Se realizó un estudio observacional prospectivo para evaluar los resultados de la aceleromiografía en pacientes con sobrepeso u obesidad comparados con pacientes con IMC normal. Los desenlaces fueron tiempo de latencia, tiempo duración 25 y tiempo de recuperación de la función neuromuscular. Resultados Se incluyeron 40 pacientes por medio de muestreo por conveniencia con una relación de 1:1 según peso corporal. No hubo diferencias significativas en las condiciones de la población a diferencia de la clasificación de ASA y el IMC (p=0,03). En el tiempo de latencia no hubo diferencias significativas (p=0.31) ni en el tiempo duración 25, y al evaluar los tiempos de recuperación del bloqueo neuromuscular se encontró una diferencia significativa en los pacientes con sobrepeso (p=0.01). Ningún paciente requirió reversión farmacológica del rocuronio. Discusión Se puede afirmar que existe una disminución en la duración de acción del rocuronio en pacientes con IMC elevado, significativamente menor a la descrita en la literatura para las dosis aplicadas. La dosificación basada en peso ideal puede realmente ser insuficiente en el paciente con sobrepeso u obesidad para alcanzar la duración clínica de este medicamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured aerobic metabolism during cold exposure and exercise performance (run duration and oxygen consumption while running at 1 m s−1) in the fat-tailed dunnart Sminthopsis crassicaudata, a dasyurid marsupial, before and after ingestion of 30 mg kg−1 of fenitrothion, an organophosphate (OP) pesticide. Running endurance of OP-exposed animals was less than half that of control animals over the first 3 days after dosing and 55% of control animal endurance on day 5 post-dose. Despite these declines, peak metabolic rate at this running speed (9.3 times basal metabolic rate; BMR) was unaffected by OP exposure. Peak metabolic rate (PMR) and cumulative oxygen consumption during a 1-h exposure to conditions equivalent to −20 °C did not differ between OP-treated and control dunnarts, with PMR averaging 11 times BMR. We conclude that fenitrothion-induced exercise fatigue is not due to limitations in oxygen or substrate delivery to muscle or in their uptake per se, but more likely relates to decreased ability to sustain high-frequency neuromuscular function. The persistence of locomotor impairment following OP exposure in otherwise asymptomatic animals emphasizes the importance of using performance-based measures when characterising sublethal effects of pesticide exposure in an ecological context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The influence of water immersion on neuromuscular function is of importance to a number of disciplines; however, the reliability of surface electromyography (SEMG) following water immersion is not known. This study examined the reliability of SEMG amplitude during maximal voluntary isometric contractions (MVICs) of the vastus lateralis following water immersion.

Methods: Using a Biodex isokinetic dynamometer and in a randomized order, 12 healthy male subjects performed four MVICs at 60° knee flexion on both the dominant and nondominant kicking legs, and the SEMG was recorded. Each subject's dominant and nondominant kicking leg was then randomly assigned to have SEMG electrodes removed or covered during 15 min of water immersion (20°C–25°C). Following water immersion, subjects performed a further four MVICs.

Results: Intraclass correlation coefficient (ICC) and the relative standard error of measurement (%SEM) of SEMG amplitude showed moderate to high trial-to-trial reliability when electrodes were covered (0.93% and 2.79%) and removed (0.95% and 2.10%, respectively).

Conclusions: The results of the this study indicate that SEMG amplitude of the vastus lateralis may be accurately determined during maximal voluntary contractions following water immersion if electrodes are either removed or covered with water-resistive tape during the immersion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The aim of this study was to compare the relative contribution of peak muscle force (isokinetic peak torque) with surrogate estimates of muscle force, including leg lean tissue mass (LTM) and vertical jump height (VJH), on bone mass, geometry and strength in healthy prepubertal girls (n = 103).

Methods:
Total leg and FN BMC and leg LTM were measured by DXA; the hip strength analysis program was used to assess FN diameter, cross-sectional area (CSA) and section modulus (Z). Isokinetic peak torque of the knee extensors and flexors (60°·s-1) were used as direct measures of peak muscle force. VJH was measured as an estimate of neuromuscular function. Total leg length or femoral length was used as a surrogate measure of moment arm length.

Results:
All estimates of muscle function, except VJH, were positively associated with leg BMC (r = 0.72 - 0.90) and FN BMC, geometry and strength (r = 0.35-0.65) (all, P < 0.001). Multiple linear regression analyses revealed that leg LTM and isokinetic peak torque were independently and equally predictive of leg BMC and FN BMC, bone geometry and strength, explaining 8 to 28% of the variance in each of the bone traits after accounting for moment arm length. When isokinetic peak torque was corrected for both leg LTM and moment arm length, it remained an independent predictor of BMC, CSA and Z, but only accounted for an additional 2 to 5% of the variance.

Conclusion: These data suggest that DXA-derived leg LTM can be used as a reasonable surrogate for isokinetic peak muscle forces when assessing bone strength in relation to muscular function in healthy pre-pubertal girls.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spaceflight and bed rest (BR) result in loss of muscle mass and strength. This study evaluated the effectiveness of resistance training and vibration-augmented resistance training to preserve thigh (quadriceps femoris) and calf (triceps surae) muscle cross-sectional area (CSA), isometric maximal voluntary contraction (MVC), isometric contractile speed, and neural activation (electromyogram) during 60 days of BR. Male subjects participating in the second Berlin Bed Rest Study underwent BR only [control (CTR), n = 9], BR with resistance training (RE; n = 7), or BR with vibration-augmented resistance training (RVE; n = 7). Training was performed three times per week. Thigh CSA and MVC torque decreased by 13.5 and 21.3%, respectively, for CTR (both P < 0.001), but were preserved for RE and RVE. Calf CSA declined for all groups, but more so (P < 0.001) for CTR (23.8%) than for RE (10.7%) and RVE (11.0%). Loss in calf MVC torque was greater (P < 0.05) for CTR (24.9%) than for RVE (12.3%), but not different from RE (14.8%). Neural activation at MVC remained unchanged in all groups. For indexes related to rate of torque development, countermeasure subjects were pooled into one resistance training group (RT, n = 14). Thigh maximal rate of torque development (MRTD) and contractile impulse remained unaltered for CTR, but MRTD decreased 16% for RT. Calf MRTD remained unaltered for both groups, whereas contractile impulse increased across groups (28.8%), despite suppression in peak electromyogram (12.1%). In conclusion, vibration exposure did not enhance the efficacy of resistance training to preserve thigh and calf neuromuscular function during BR, although sample size issues may have played a role. The exercise regimen maintained thigh size and MVC strength, but promoted a loss in contractile speed. Whereas contractile speed improved for the calf, the exercise regimen only partially preserved calf size and MVC strength. Modification of the exercise regimen seems warranted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several studies have demonstrated that caffeine improves endurance exercise performance but the mechanisms are not fully understood. Possibilities include increased free fatty acid (FFA) oxidation with consequent sparing of muscle glycogen as well as enhancement of neuromuscular function during exercise. The present study was designed to investigate the effects of caffeine on liver and muscle glycogen of 3-month old, male Wistar rats (250-300 g) exercising by swimming. Caffeine (5 mg/kg) dissolved in saline (CAF) or 0.9% sodium chloride (SAL) was administered by oral intubation (1 mu l/g) to fed rats 60 min before exercise. The rats (N = and-IO per group) swam bearing a load corresponding to 5% body weight for 30 or 60 min. FFA levels were significantly elevated to 0.475 +/- 0.10 mEq/l in CAF compared to 0.369 +/- 0.06 mEq/l in SAL rats at the beginning of exercise. During exercise, a significant difference in FFA levels between CAF and SAL rats was observed at 30 min (0.325 +/- 0.06 vs 0.274 +/- 0.05 mEq/l) but not at 60 min (0.424 +/- 0.13 vs 0.385 +/- 0.10 mEq/l). Blood glucose showed an increase due to caffeine only at the end of exercise (CAF = 142.1 +/- 27.4 and SAL = 120.2 +/- 12.9 mg/100 ml). No significant difference in liver or muscle glycogen was observed in CAF as compared to SAL rats, at rest or during exercise. Caffeine increased blood lactate only at the beginning of exercise (CAF = 2.13 +/- 0.2 and SAL = 1.78 +/- 0.2 mmol/l). These data indicate that caffeine (5 mg/kg) has no glycogen-sparing effect on rats exercising by swimming even though the FFA levels of CAF rats were significantly higher at the beginning of exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VOax). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (90% VOax). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. © 2013 Cláudio de Oliveira Assumpção et al.