994 resultados para n-nonane pre-adsorption


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carboxymethylcellulose packed in to a glass column was used to pre-concentrate metallic cations from aqueous solutions. The pre-concentrated metal cations are directly eluted from the column using 5.0 mL of 1.0 mol L -1 hydrochloric acid. The optimum pre-concentration conditions are given (glass column, 16 cm length, 0.80 cm i.d., stationary phase height of 12 cm, flow-rate, 1.5 mL min -1). The recuperation efficiency achieved is greater than 95%, while the enrichment factor is 10 for 50 mL of solution (0.50 mg L -1 each).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT), and the results of a study of the adsorption and pre-concentration (in batch and using a flow-injection system coupled to an absorption atomic spectrometer) of Cu(II), Ni(II) and Pb(II) in aqueous medium. The adsorption capacities for each metal ions in mmol g -1 were: Cu(II)= 1.18, Ni(II)= 1.15 and Pb(II)= 1.10. The results obtained in the flow experiments showed a recovery of practically 100% of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 μL of 2.0 mol L -1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the application of a flow-injection system for the pre-concentration and quantification by FAAS of metal ions at trace level in natural water samples digested and not digest by an oxidizing UV photolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study describes the incorporation of a complexing agent, dithiooxamide, into microcrystalline cellulose for use in the pre-concentration of Cu(II) and Cd(II) ions from aqueous samples. The FTIR spectrum of the adsorbent exhibited an absorption band in the region of 800 cm-1, which confirmed the binding of the silylating agent to the matrix. Elemental analysis indicated the amount of 0.150 mmol g-1 of the complexing agent. The adsorption data were fit to the modified Langmuir equation, and the maximum amount of metal species extracted from the solution, Ns, was determined to be 0.058 and 0.072 mmol g-1 for Cu(II) and Cd(II), respectively. The covering fraction φ, which was 0.39 and 0.48 for Cu(II) and Cd(II), respectively, was used to estimate a 1:2 (metal:ligand) ratio in the formed complex, and a binding model was proposed based on this information. The adsorbent was applied in the pre-concentration of natural water samples and exhibited an enrichment factor of approximately 50-fold for the species studied, which enabled its use in the analysis of trace metals in aqueous samples. The system was validated by the analysis of certified standard (1643e), and the adsorbent was stable for more than 20 cycles, thus enabling its safe reutilization. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a silica surface chemically modified with [3-(2,2′-dipyridylamine)propyl] groups, named [3-(2,2′- dipyridylamine)propyl]silica (Si-Pr-DPA) was prepared, characterized, and evaluated for its heavy metal adsorption characteristics from aqueous solution. To our knowledge, we are the first authors who have reported the present modification. The material was characterized using infrared spectroscopy, SEM, and NMR 29Si and 13C solid state. Batch and column experiments were conducted to investigate for heavy metal removal from dilute aqueous solution by sorption onto Si-Pr-DPA. From a number of studies the affinity of various metal ions for the Si-Pr-DPA sorbent was determined to follow the order Fe(III) > Cr(III) >> Cu(II) > Cd(II) > Pb(II) > Ni(II). Two standard reference materials were used for checking the accuracy and precision of the method. The proposed method was successfully applied to the analysis of environmental samples. This ligand material has great advantage for adsorption of transition-metal ions from aqueous medium due to its high degree of organofunctionalization associated with the large adsorption capacity, reutilization possibility, and rapidity in reaching the equilibrium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was the preparation of a silsesquioxane functionalized with eight chloropropyl chains (T8-PrCl) and of a new derivative functionalized with a pendant linear chain (2-amino-1,3,4-thiadiazole - ATD; T8-Pr-ATD). The two nanostructured materials were characterized by 13C and 29Si NMR, FTIR and elemental analysis. The new nanostructured material, octakis[3-(2-amino-1,3,4-thiadiazole)propyl] octasilsesquioxane (T8-Pr-ATD), was tested as a ligand for transition-metal ions with a special attention to adsorption isotherms. The adsorption was performed using a batchwise process and the organofunctionalized surface showed the ability to adsorb the metal ions Cu (II), Co (II), and Ni (II) from water and ethanol. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) model. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and Elovich models were the most appropriate to describe the adsorption and kinetic data, respectively. Furthermore, the T8-Pr-ATD was successfully applied to the analysis of environmental samples (river and sea water). Subsequently, a new nanomaterial was prepared by functionalization of the T8-Pr-ATD with a Mo (II) organometallic complex (T8-Pr-ATD-Mo). Only a few works in the literature have reported this type of substitution, and none dealt with ATD and Mo (II) complexes. The new Mo-silsesquioxane organometallic nanomaterial was tested as precursor in the epoxidation of cyclooctene and styrene. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, carra sawdust pre-treated with formaldehyde was used to adsorb reactive red 239 (RR239). The effects of several experimental conditions, including the concentration of dye, sorbent dosage, temperature, ionic strength, stirring speed and solution pH, on the kinetics of the adsorption process have been studied, and the experimental data were fitted to pseudo-second-order model. A study of the intra-particle diffusion model indicates that the mechanism of dye adsorption using carra sawdust is rather complex and is most likely a combination of external mass transfer and intra-particle diffusion. The experimental data obtained at equilibrium were analyzed using the Langmuir and Freundlich isotherm models, and the results indicated that at this concentration range, both models can be applied for obtaining the equilibrium parameters. The maximum dye uptake obtained at 298 K was found to be 15.1 mg g(-1). In contrast to the usual systems, the reactive dye studied in the present work is strongly attached to the sawdust even after several washes with water, allowing it to be discarded as a solid waste.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In variable charge soils, anion retention and accumulation through adsorption at exchange sites is a competitive process. The objectives of this study in the wet tropics of far north Queensland were to investigate (i) whether the pre-existing high sulphate in variable charge soils had any impact on the retention of chloride and nitrate, derived mostly from the applied fertilizer; and (ii) whether chloride competed with nitrate during the adsorption processes. Soil cores up to 12.5 m depth were taken from seven sites, representing four soil types, in the Johnstone River Catchment. Six of these sites had been under sugarcane (Saccharum officinarum-S) cultivation for at least 50 years and one was an undisturbed rainforest. The cores were segmented at 1.0 m depth increments, and subsamples were analysed for nitrate-N, cation (CEC)- and anion-exchange capacities (AEC), pH, exchangeable cations (Ca, Mg, K, Na), soil organic C (SOC), electrical conductivity (EC), sulphate-S, and chloride. Sulphate-S load in 1-12 m depth under cropping ranged from 9.4 to 73.9 t ha(-1) (mean= 40 t ha(-1)) compared with 74.4 t ha(-1) in the rainforest. Chloride load under cropping ranged from 1.5 to 9.6 t ha(-1) (mean= 4.9 t ha(-1)) compared to 0.9 t ha(-1) in the rainforest, and the nitrate-N load from 113 to 2760 kg ha(-1) (mean = 910 kg ha(-1)) under cropping compared to 12 kg ha(-1) in the rainforest. Regardless of the soil type, the total chloride or nitrate-N input in fertilisers was 7.5 t ha(-1), during the last 50 years. Sulphate-S distribution in soil profiles decreased with depth at >2 m, whereas bulges of chloride or nitrate-N were observed at depths >2 m. This suggests that chloride or nitrate adsorption and retention increased with decreasing sulphate dominance. Abrupt decreases in equivalent fraction of sulphate (EFSO4), at depths >2 m, were accompanied by rapid increases in equivalent fraction of chloride (EFCl), followed by nitrate (EFNO3). The stepwise regression for EFCl and EFNO3 indicated that nitrate retention was reduced by the pre-existing sulphate and imported chloride, whereas only sulphate reduced chloride adsorption. The results indicate that chloride and nitrate adsorption and retention occurred, in the order chloride>nitrate, in soils containing large amounts of sulphate under approximately similar total inputs of N- and Cl-fertilisers. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied an in vitro model of continuous venous-venous haemofiltration (CVVH), into which levofloxacin 100 mg was infused, to determine levofloxacin adsorption and to determine the effect of filter material and point of dilution (pre- or post-filter) on sieving coefficient. Mean (standard deviation; S.D.) adsorption was 18.7 (5.3) mg for the polyamide filter and 40.2 (2.0) mg for the polyacrylonitrile (PAN) filter (P < 0.001). Post-dilution resulted in a minor, but statistically significant, decrease in sieving coefficient (pre-dilution 0.96 (S.D. 0.10), post-dilution 0.88 (S.D. 0.11) with the PAN filter. These data indicate that the variability in published values for levofloxacin sieving coefficient are not due to variation in point of dilution or membrane type (PAN or polyamide). Significant adsorption of levofloxacin onto PAN filters occurs. (C) 2004 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global concentration of CO2 in the atmosphere is increasing rapidly. CO2 emissions have huge impact on global climate change. Therefore, efficient CO2 emission abatement strategies such as Carbon Capture and Storage (CCS) are required to combat this phenomenon. There are three major approaches for CCS: - Post-combustion capture; - Pre-combustion capture; - Oxyfuel process. Post-combustion capture offers some advantages in terms of cost as existing combustion technologies can still be used without radical changes on them. This makes post-combustion capture easier to implement as a retrofit option compared to the other two approaches. Therefore, post-combustion capture is probably the first technology that will be deployed on a large scale. The aim of this work is to study the adsorption equilibrium of CO2, CH4 and N2 in zeolite 5A at 40ºC. For this, experiments were performed to determine the isotherms of adsorption of CO2, CH4 and N2 near 40ºC with the conditions of the post-combustion capture processes. It has been found that the 5A zeolite adsorbs a significant quantity of CO2 values of about 5 mol/kg at a pressure of 5 bar.