945 resultados para multivariate regression tree
Resumo:
In den vorliegenden Untersuchungen wurde der Gehalt von Carotinoiden in Weizen, Mais und Möhren sowie der Polyphenolgehalt in Möhren mit analytischen Methoden zum Nachweis dieser Substanzen gemessen. Der Gehalt der Carotinoide in Mais und der Gehalt der phenolischen Bestandteile in Möhren wurde mit Messungen mittels HPLC-Analytik gemessen. Die Methoden wurden aus literaturbekannten Verfahren abgeleitet und an die Anforderungen der untersuchten Probenmatrices angepasst und validiert. Dem Verfahren lag die Frage zugrunde, ob es möglich ist, Kulturpflanzen aus verschiedenen Anbausystemen auf der Basis des Gehaltes bestimmter sekundärer Pflanzeninhaltsstoffe zu differenzieren und aufgrund von Unterschieden im Gehalt der sekundären Pflanzeninhaltsstoffe zu klassifizieren. Die Gesamtverfahren wurden dabei gemäß der ISO 17025 validiert. Für die Messungen standen Proben aus definierten Langzeitversuchen und Erzeugerproben ausgesuchter ökologisch bzw. konventionell arbeitender Anbaubetriebe zur Verfügung. Als Grundlage für eine valide Methodeneinschätzung wurden die Messungen an codierten Proben vorgenommen. Eine Decodierung der Proben erfolgte erst nach der Vorlage der Messergebnisse in den genannten Projekten. Die Messung und Auswertung des Carotinoidgehaltes in Weizen, Mais und Möhren vor dem Hintergrund der Differenzierung und Klassifizierung erfolgte in Proben eines Erntejahres. Die Messung des Gehaltes phenolischer Substanzen in Möhren erfolgte in Möhren aus 3 Erntejahren. Die verwendeten HPLC-Verfahren konnten in Bezug auf den analytischen Teil der Messungen in den einzelnen Verfahrensschritten Linearität, Spezifität, Präzision und Robustheit erfolgreich überprüft werden. Darüber hinaus wurden wichtige Einflussgrößen auf die Messungen bestimmt. Für die Verfahren zur photometrischen Bestimmung der Gesamtcarotinoide konnte eine Grundkalibrierung der Parameter Präzision und Linearität des Verfahrens erfolgreich durchgeführt werden. Während der Anwendung der HPLC-Methoden an codierten Proben konnten in allen untersuchten Probenmatrices quantitativ bedeutende Inhaltsstoffe nachgewiesen und identifiziert werden. Eine vollständige Identifizierung aller dargestellten Peaks konnte in den Untersuchungen der Polyphenole in Möhren und der Carotinoide in Mais nicht erfolgen. Im Hinblick auf die Frage nach der Differenzierung und Klassifizierung ergab sich in den verschiedenen Proben ein unterschiedliches Bild. Sowohl durch den Carotinoid- als auch den Polyphenolgehalt konnten einzelne Proben statistisch signifikant differenziert werden. Die Trennleistung hing dabei sowohl von den jeweiligen Komponenten als auch von der untersuchten Probenmatrix ab. Ein durchgängig höherer Gehalt sekundärer Pflanzeninhaltsstoffe in Proben aus ökologischem Anbau konnte nicht bestätigt werden. Für die Klassifizierung der Proben verschiedener Anbauvarianten und konnten multivariate statistische Methoden, wie lineare Diskriminantenanalyse (LDA) und Classification and Regression Tree (CART), erfolgreich angewandt werden. Eine Klassifizierung mit unterschiedlichen statistischen Verfahren erbrachte dabei unterschiedliche Ergebnisse. In der Klassifizierung der decodierten Proben mittels LDA wirkten sich die Faktoren Sorte und Standort stärker auf das Klassifizierungsergebnis aus als der Faktor Anbausystem. Eine Klassifizierung der decodierten Proben nach dem Anbausystem wurde mit dem CART-Verfahren durchgeführt. Auf dieser Basis wurden für die Polyphenole in Möhren 97 % der Proben richtig klassifiziert. Durch die Messwerte des Carotinoidgehaltes und des Luteingehaltes in Weizen konnte der größere Teil der Proben (90 %) korrekt klassifiziert werden. Auf der Basis des Carotinoidgehaltes in Mais wurde der Großteil der Proben (95 %) korrekt nach dem Anbausystem klassifiziert. Auf der Basis des mittels HPLC gemessenen Carotinoidgehaltes in Möhren konnten die Proben 97 % korrekt klassifiziert werden (97 %). Insgesamt erscheint der Grundgedanke der Klassifizierung durch den Gehalt sekundärer Pflanzeninhaltsstoffe vielversprechend. Durch die vielfältigen Einflussgrößen auf den Sekundärstoffwechsel von Pflanzen müssten Veränderungen, die durch Sorte und Standort auftreten, über mehrere Jahre erhoben und systematisiert werden.
Resumo:
Objetivos: Determinar la prevalencia y los factores asociados con el desarrollo de hipotiroidismo autoinmune (HA) en una cohorte de pacientes con lupus eritematoso sistémico (LES), y analizar la información actual en cuanto a la prevalencia e impacto de la enfermedad tiroidea autoinmune y la autoinmunidad tiroidea en pacientes con LES. Métodos: Este fue un estudio realizado en dos pasos. Primero, un total de 376 pacientes con LES fueron evaluados sistemáticamente por la presencia de: 1) HA confirmado, 2) positividad para anticuerpos tiroperoxidasa/tiroglobulina (TPOAb/TgAb) sin hipotiroidismo, 3) hipotiroidismo no autoinmune, y 4) pacientes con LES sin hipotiroidismo ni positividad para TPOAb/TgAb. Se construyeron modelos multivariados y árboles de regresión y clasificación para analizar los datos. Segundo, la información actual fue evaluada a través de una revisión sistemática de la literatura (RLS). Se siguieron las guías PRISMA para la búsqueda en las bases de datos PubMed, Scopus, SciELO y Librería Virtual en Salud. Resultados: En nuestra cohorte, la prevalencia de HA confirmado fue de 12% (Grupo 1). Sin embargo, la frecuencia de positividad para TPOAb y TgAb fue de 21% y 10%, respectivamente (Grupo 2). Los pacientes con LES sin HA, hipotiroidismo no autoinmune ni positividad para TPOAb/TgAb constituyeron el 40% de la corhorte. Los pacientes con HA confirmada fueron estadísticamente significativo de mayor edad y tuvieron un inicio tardío de la enfermedad. El tabaquismo (ORA 6.93, IC 95% 1.98-28.54, p= 0.004), la presencia de Síndrome de Sjögren (SS) (ORA 23.2, IC 95% 1.89-359.53, p= 0.015) y la positividad para anticuerpos anti-péptido cíclico citrulinado (anti-CCP) (ORA 10.35, IC 95% 1.04-121.26, p= 0.047) se asociaron con la coexistencia de LES-HA, ajustado por género y duración de la enfermedad. El tabaquismo y el SS fueron confirmados como factores predictivos para LES-HA (AUC del modelo CART = 0.72). En la RSL, la prevalencia de ETA en LES varío entre 1% al 60%. Los factores asociados con esta poliautoinmunidad fueron el género femenino, edad avanzada, tabaquismo, positividad para algunos anticuerpos, SS y el compromiso articular y cutáneo. Conclusiones: La ETA es frecuente en pacientes con LES, y no afecta la severidad del LES. Los factores de riesgo identificados ayudarán a los clínicos en la búsqueda de ETA. Nuestros resultados deben estimular políticas para la suspensión del tabaquismo en pacientes con LES.
Resumo:
This paper deals with asymptotic results on a multivariate ultrastructural errors-in-variables regression model with equation errors Sufficient conditions for attaining consistent estimators for model parameters are presented Asymptotic distributions for the line regression estimators are derived Applications to the elliptical class of distributions with two error assumptions are presented The model generalizes previous results aimed at univariate scenarios (C) 2010 Elsevier Inc All rights reserved
Resumo:
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.
Resumo:
The goal of this paper is to introduce a class of tree-structured models that combines aspects of regression trees and smooth transition regression models. The model is called the Smooth Transition Regression Tree (STR-Tree). The main idea relies on specifying a multiple-regime parametric model through a tree-growing procedure with smooth transitions among different regimes. Decisions about splits are entirely based on a sequence of Lagrange Multiplier (LM) tests of hypotheses.
Resumo:
Abstract Background Smear negative pulmonary tuberculosis (SNPT) accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.
Resumo:
Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils.We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage 'Venice and its lagoon'. We analysed the abundance of plant species at 255 sampling points along a land-sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. Halimione portulacoides) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. Spartina maritima) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems and may be a sensitive and easy-to-use tool to assess human impacts on salt marsh ecosystems.
Resumo:
In this paper, we present syllable-based duration modelling in the context of a prosody model for Standard Yorùbá (SY) text-to-speech (TTS) synthesis applications. Our prosody model is conceptualised around a modular holistic framework. This framework is implemented using the Relational Tree (R-Tree) techniques. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration, intonation, and intensity, using different techniques and their subsequent integration. We applied the Fuzzy Decision Tree (FDT) technique to model the duration dimension. In order to evaluate the effectiveness of FDT in duration modelling, we have also developed a Classification And Regression Tree (CART) based duration model using the same speech data. Each of these models was integrated into our R-Tree based prosody model. We performed both quantitative (i.e. Root Mean Square Error (RMSE) and Correlation (Corr)) and qualitative (i.e. intelligibility and naturalness) evaluations on the two duration models. The results show that CART models the training data more accurately than FDT. The FDT model, however, shows a better ability to extrapolate from the training data since it achieved a better accuracy for the test data set. Our qualitative evaluation results show that our FDT model produces synthesised speech that is perceived to be more natural than our CART model. In addition, we also observed that the expressiveness of FDT is much better than that of CART. That is because the representation in FDT is not restricted to a set of piece-wise or discrete constant approximation. We, therefore, conclude that the FDT approach is a practical approach for duration modelling in SY TTS applications. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.
Resumo:
The pathological mechanisms underlying cognitive dysfunction in multiple sclerosis (MS) are not yet fully understood and, in addition to demyelinating lesions and gray-matter atrophy, subclinical disease activity may play a role. To evaluate the contribution of asymptomatic gadolinium-enhancing lesions to cognitive dysfunction along with gray-matter damage and callosal atrophy in relapsing-remitting MS (RRMS) patients. Forty-two treated RRMS and 30 controls were evaluated. MRI (3T) variables of interest were brain white-matter and cortical lesion load, cortical and deep gray-matter volumes, corpus callosum volume and presence of gadolinium-enhancing lesions. Outcome variables included EDSS, MS Functional Composite (MSFC) subtests and the Brief Repeatable Battery of Neuropsychological tests. Cognitive dysfunction was classified as deficits in two or more cognitive subtests. Multivariate regression analyses assessed the contribution of MRI metrics to outcomes. Patients with cognitive impairment (45.2%) had more cortical lesions and lower gray-matter and callosal volumes. Patients with subclinical MRI activity (15%) had worse cognitive performance. Clinical disability on MSFC was mainly associated with putaminal atrophy. The main independent predictors for cognitive deficits were high burden of cortical lesions and number of gadolinium-enhancing lesions. Cognitive dysfunction was especially related to high burden of cortical lesions and subclinical disease activity. Cognitive studies in MS should look over subclinical disease activity as a potential contributor to cognitive impairment.
Resumo:
In this work a fast method for the determination of the total sugar levels in samples of raw coffee was developed using the near infrared spectroscopy technique and multivariate regression. The sugar levels were initially obtained using gravimety as the reference method. Later on, the regression models were built from the near infrared spectra of the coffee samples. The original spectra were pre-treated according to the Kubelka-Munk transformation and multiplicative signal correction. The proposed analytical method made possible the direct determination of the total sugar levels in the samples with an error lower by 8% with respect to the conventional methodology.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Impact of cancer-related symptom synergisms on health-related quality of life and performance status
Resumo:
To identify the impact of multiple symptoms and their co-occurrence on health-related quality of life (HRQOL) dimensions and performance status (PS), 115 outpatients with cancer, who were not receiving active cancer treatment and were recruited from, a university hospital in Sao Paulo, Brazil completed the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30, the Beck Depression Inventory, and the Brief Pain Inventory. Karnofsky Performance Status scores also were completed. Application of TwoStep Cluster analysis resulted in two distinct patient subgroups based on 113 patient experiences with pain, depression, fatigue, insomnia, constipation, lack of appetite, dyspnea, nausea, vomiting, and diarrhea. One group had multiple and severe symptom subgroup and another had Less symptoms and with lower severity. Multiple and severe symptoms had worse PS, role functioning, and physical, emotional, cognitive, social, and overall HRQOL. Multiple and severe symptom subgroup was also six times as likely as lower severity to have poor role functioning;five times more likely to have poor emotional;four times more likely to have poor PS, physical, and overall HRQOL, and three times as likely to have poor cognitive and social HRQOL, independent of gender, age, level of education, and economic condition. Classification and Regression Tree analyses were undertaken to identify which co-occurring symptoms would best determine reduction in HRQOL and PS. Pain and fatigue were identified as indicators of reduction on physical HRQOL and PS. Fatigue and insomnia were associated with reduction in cognitive; depression and pain in social; and fatigue and constipation in role functioning. Only depression was associated with reduction in overall HRQOL. These data demonstrate that there is a synergic effect among distinct cancer symptoms that result in reduction in HRQOL dimensions and PS.
Resumo:
Mercury (Hg) exposure causes health problems that may result from increased oxidative stress and matrix metalloproteinase (MMP) levels. We investigated whether there is an association between the circulating levels of MMP-2, MMP-9, their endogenous inhibitors (the tissue inhibitors of metalloproteinases; TIMPs) and the circulating Hg levels in 159 subjects environmentally exposed to Hg. Blood and plasma Hg were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA respectively. Thiobarbituric acid-reactive species (TBARS) were measured in plasma to assess oxidative stress. Selenium (Se) levels were determined by ICP-MS because it is an antioxidant. The relations between bioindicators of Hg and the metalloproteinases levels were examined using multivariate regression models. While we found no relation between blood or plasma Hg and MMP-9, plasma Hg levels were negatively associated with TIMP-1 and TIMP-2 levels, and thereby with increasing MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios, thus indicating a positive association between plasma Hg and circulating net MMP-9 and MMP-2 activities. These findings provide a new insight into the possible biological mechanisms of Hg toxicity, particularly in cardiovascular diseases.
Resumo:
There is concern that Pacific Island economies dependent on remittances of migrants will endure foreign exchange shortages and falling living standards as remittance levels fall because of lower migration rates and the belief that migrants' willingness to remit declines over time. The empirical validity of the remittance-decay hypothesis has never been tested. From survey data on Tongan and Western Samoan migrants in Sydney, this paper estimates remittance functions using multivariate regression analysis. It is found that the remittance-decay hypothesis has no empirical validity, and migrants are motivated by factors other than altruistic family support, including asset accumulation and investment back home.