984 resultados para multifractional Brownian motion
Resumo:
A characterization is provided for the von Mises–Fisher random variable, in terms of first exit point from the unit hypersphere of the drifted Wiener process. Laplace transform formulae for the first exit time from the unit hypersphere of the drifted Wiener process are provided. Post representations in terms of Bell polynomials are provided for the densities of the first exit times from the circle and from the sphere.
Resumo:
Interim clinical trial monitoring procedures were motivated by ethical and economic considerations. Classical Brownian motion (Bm) techniques for statistical monitoring of clinical trials were widely used. Conditional power argument and α-spending function based boundary crossing probabilities are popular statistical hypothesis testing procedures under the assumption of Brownian motion. However, it is not rare that the assumptions of Brownian motion are only partially met for trial data. Therefore, I used a more generalized form of stochastic process, called fractional Brownian motion (fBm), to model the test statistics. Fractional Brownian motion does not hold Markov property and future observations depend not only on the present observations but also on the past ones. In this dissertation, we simulated a wide range of fBm data, e.g., H = 0.5 (that is, classical Bm) vs. 0.5< H <1, with treatment effects vs. without treatment effects. Then the performance of conditional power and boundary-crossing based interim analyses were compared by assuming that the data follow Bm or fBm. Our simulation study suggested that the conditional power or boundaries under fBm assumptions are generally higher than those under Bm assumptions when H > 0.5 and also matches better with the empirical results. ^
Resumo:
We analyse a class of estimators of the generalized diffusion coefficient for fractional Brownian motion Bt of known Hurst index H, based on weighted functionals of the single time square displacement. We show that for a certain choice of the weight function these functionals possess an ergodic property and thus provide the true, ensemble-averaged, generalized diffusion coefficient to any necessary precision from a single trajectory data, but at expense of a progressively higher experimental resolution. Convergence is fastest around H ? 0.30, a value in the subdiffusive regime.
Resumo:
2000 Mathematics Subject Classification: 60J65.
Resumo:
A reálopciók a döntési rugalmasság megtestesítőiként jelen vannak a vállalatvezetők mindennapjaiban, és cégtől függően jelentős értéket képviselhetnek. Értékelésük a hagyományos diszkontált pénzáramlás módszerekkel csak korlátozottan lehetséges, ezért alternatívaként felmerül a pénzügyi opcióárazás módszertana, amelynek hagyományos változatai az alaptermék alakulásáról geometriai Brown-mozgást feltételeznek. A cikk ezt a feltevést veszi górcső alá a reálopciókra történő alkalmazás szempontjából, és megmutatja, hogy habár önkényesnek tűnhet, valójában nem pusztán egy matematikai szempontból kényelmes megoldás, hanem pénzügyileg is elfogadható feltétel. _______ Real options represent the fl exibility of decision-making, and are thus part of the everyday work of corporate executives, often having great value. Valuing them with the use of traditional Discounted Cash Flow models has limited relevance, therefore arises the alternative methodology of fi nancial option pricing, the traditional versions of which assume that the price of the underlying asset follows Geometric Brownian Motion. The paper examines this assumption from the aspect of real option valuation and shows that although it might seem arbitrary, it is not only a mathematically convenient choice, but also a fi nancially acceptable one.
Resumo:
The motion of a single Brownian particle of arbitrary size through a dilute colloidal dispersion of neutrally buoyant bath spheres of another characteristic size in a Newtonian solvent is examined in two contexts. First, the particle in question, the probe particle, is subject to a constant applied external force drawing it through the suspension as a simple model for active and nonlinear microrheology. The strength of the applied external force, normalized by the restoring forces of Brownian motion, is the Péclet number, Pe. This dimensionless quantity describes how strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of the suspension. These interpreted quantities are calculated to first order in the volume fraction of bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively. With increasing applied force, the accumulation region compresses to form a thin boundary layer whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake. The magnitude of the microstructural disturbance is found to grow with increasing bath particle size -- small bath particles in the solvent resemble a continuum with effective microviscosity given by Einstein's viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect toward the minimum approach distance possible between the probe and bath particle, and the probe and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle is able to move past; this is a process that slows the motion of the probe by a factor of the size ratio. The intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions from Brownian motion, and force thicken at high Péclet number due to the increasing influence of the configuration-averaged reduction in the probe's hydrodynamic self mobility. Nonmonotonicity at finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-probe particle size ratio. The intrinsic microviscosity is found to grow with the size ratio for very small probes even at large-but-finite Péclet numbers. However, even a small repulsive interparticle potential, that excludes lubrication interactions, can reduce this intrinsic microviscosity back to an order one quantity. The results of this active microrheology study are compared to previous theoretical studies of falling-ball and towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and the singular limit of full hydrodynamic interactions is noted.
Second, the probe particle in question is no longer subject to a constant applied external force. Rather, the particle is considered to be a catalytically-active motor, consuming the bath reactant particles on its reactive face while passively colliding with reactant particles on its inert face. By creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoretically propel itself with some mean velocity. The effects of finite size of the solute are examined on the leading order diffusive microstructure of reactant about the motor. Brownian and interparticle contributions to the motor velocity are computed for several interparticle interaction potential lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity increasing with decreasing motor size. A discussion on Brownian rotation frames the context in which these results could be applicable, and future directions are proposed which properly incorporate reactant advection at high motor velocities.
Resumo:
The lateral migration of neutrally buoyant rigid spheres in two-dimensional unidirectional flows was studied theoretically. The cases of both inertia-induced migration in a Newtonian fluid and normal stress-induced migration in a second-order fluid were considered. Analytical results for the lateral velocities were obtained, and the equilibrium positions and trajectories of the spheres compared favorably with the experimental data available in the literature. The effective viscosity was obtained for a dilute suspension of spheres which were simultaneously undergoing inertia-induced migration and translational Brownian motion in a plane Poiseuille flow. The migration of spheres suspended in a second-order fluid inside a screw extruder was also considered.
The creeping motion of neutrally buoyant concentrically located Newtonian drops through a circular tube was studied experimentally for drops which have an undeformed radius comparable to that of the tube. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop due to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow were obtained for various viscosity ratios, total flow rates, and drop sizes. The results were compared with existing theoretical and experimental data.
Resumo:
We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.
Resumo:
We investigate the super-Brownian motion with a single point source in dimensions 2 and 3 as constructed by Fleischmann and Mueller in 2004. Using analytic facts we derive the long time behavior of the mean in dimension 2 and 3 thereby complementing previous work of Fleischmann, Mueller and Vogt. Using spectral theory and martingale arguments we prove a version of the strong law of large numbers for the two dimensional superprocess with a single point source and finite variance.
Resumo:
We report the exact fundamental solution for Kramers equation associated to a Brownian gas of charged particles, under the influence of homogeneous (spatially uniform) otherwise arbitrary, external mechanical, electrical and magnetic fields. Some applications are presented, namely the hydrothermodynamical picture for Brownian motion in the long-time regime. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We study a charged Brownian gas with a non uniform bath temperature, and present a thermohydrodynamical picture. Expansion on the collision time probes the validity of the local equilibrium approach and the relevant thermodynamical variables. For the linear regime we present several applications (some novel).
Resumo:
We consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski- reactive like equation; for the particle's momentum density, a generalized Ohm's-like equation; and for the particle's energy density, a MaxwellCattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann's entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles. © 2011 Elsevier B.V. All rights reserved.
Resumo:
We consider a charged Brownian gas under the influence of external, static and uniform electric and magnetic fields, immersed in a uniform bath temperature. We obtain the solution for the associated Langevin equation, and thereafter the evolution of the nonequilibrium temperature towards a nonequilibrium (hot) steady state. We apply our results to a simple yet relevant Brownian model for carrier transport in GaAs. We obtain a negative differential conductivity regime (Gunn effect) and discuss and compare our results with the experimental results. © 2013.
Resumo:
We have micromachined a silicon-chip device that transports DNA with a Brownian ratchet that rectifies the Brownian motion of microscopic particles. Transport properties for a DNA 50-mer agree with theoretical predictions, and the DNA diffusion constant agrees with previous experiments. This type of micromachine could provide a generic pump or separation component for DNA or other charged species as part of a microscale lab-on-a-chip. A device with reduced feature size could produce a size-based separation of DNA molecules, with applications including the detection of single-nucleotide polymorphisms.