992 resultados para molecular diagnostic


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: Small nodal tumor infiltrates are identified by applying multilevel sectioning and immunohistochemistry (IHC) in addition to H&E (hematoxylin and eosin) stains of resected lymph nodes. However, the use of multilevel sectioning and IHC is very time-consuming and costly. The current standard analysis of lymph nodes in colon cancer patients is based on one slide per lymph node stained by H&E. A new molecular diagnostic system called ''One tep Nucleic Acid Amplification'' (OSNA) was designed for a more accurate detection of lymph node metastases. The objective of the present investigation was to compare the performance ofOSNAto current standard histology (H&E). We hypothesize that OSNA provides a better staging than the routine use of one slide H&E per lymph node.Methods: From 22 colon cancer patients 307 frozen lymph nodes were used to compare OSNA with H&E. The lymph nodes were cut into halves. One half of the lymph node was analyzed by OSNA. The semi-automated OSNA uses amplification of reverse-transcribed cytokeratin19 (CK19) mRNA directly from the homogenate. The remaining tissue was dedicated to histology, with 5 levels of H&E and IHC staining (CK19).Results: On routine evaluation of oneH&Eslide 7 patients were nodal positive (macro-metastases). All these patients were recognized by OSNA analysis as being positive (sensitivity 100%). Two of the remaining 15 patients had lymph node micro-metastases and 9 isolated tumor cells. For the patients with micrometastases both H&E and OSNA were positive in 1 of the 2 patients. For patients with isolated tumor cells, H&E was positive in 1/9 cases whereas OSNA was positive in 3/9 patients (IHC as a reference). There was only one case to be described as IHC negative/OSNA positive. On the basis of single lymph nodes the sensitivity of OSNA and the 5 levels of H&E and IHC was 94・5%.Conclusion: OSNA is a novel molecular tool for the detection of lymph node metastases in colon cancer patients which provides better staging compared to the current standard evaluation of one slide H&E stain. Since the use of OSNA allows the analysis of the whole lymph node, sampling bias and undetected tumor deposits due to uninvestigated material will be overcome. OSNA improves staging in colon cancer patients and may replace the current standard of H&E staining in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 10-year experience of our automated molecular diagnostic platform that carries out 91 different real-time PCR is described. Progresses and future perspectives in molecular diagnostic microbiology are reviewed: why automation is important; how our platform was implemented; how homemade PCRs were developed; the advantages/disadvantages of homemade PCRs, including the critical aspects of troubleshooting and the need to further reduce the turnaround time for specific samples, at least for defined clinical settings such as emergencies. The future of molecular diagnosis depends on automation, and in a novel perspective, it is time now to fully acknowledge the true contribution of molecular diagnostic and to reconsider the indication for PCR, by also using these tests as first-line assays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rickettsia Anaplasma marginale is considered the main agent of bovine anaplasmosis. Due the nonspecific clinical signs of the anaplasmosis, the diagnosis of infection depends of laboratory confirmation. In recent years, molecular diagnostic methods have been used to detect A. marginale in cattle. However, the existence of a large number of assays of different sensitivity and cost makes the choice of an appropriate test difficult. In the present study, a real-time Polymerase Chain Reaction (PCR) based on the msp5 target gene was quantitatively assessed and compared to an end point PCR. Both reactions were subjected to sensitivity and specificity evaluation using plasmid DNA and samples from cattle experimentally infected with A. marginale. A comparative field trial of the tests was carried out using samples of cattle from a stable enzootic area for A. marginale. The real-time PCR showed a higher sensitivity than the end point PCR. This reaction (i.e. real-time PCR) was able to detect one copy of the msp5 gene in 100 ηg of plasmidial DNA, and more than 80% of its results were positive among experimentally infected animals seven days after infection. In addition, based on in silico analysis, the real-time PCR evaluated in the present study appears to be useful for the detection of A. ovis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The number of molecular diagnostic assays has increased tremendously in recent years.Nucleic acid diagnostic assays have been developed, especially for the detection of human pathogenic microbes and genetic markers predisposing to certain diseases. Closed-tube methods are preferred because they are usually faster and easier to perform than heterogenous methods and in addition, target nucleic acids are commonly amplified leading to risk of contamination of the following reactions by the amplification product if the reactions are opened. The present study introduces a new closed-tube switchable complementation probes based PCR assay concept where two non-fluorescent probes form a fluorescent lanthanide chelate complex in the presence of the target DNA. In this dual-probe PCR assay method one oligonucleotide probe carries a non-fluorescent lanthanide chelate and another probe a light absorbing antenna ligand. The fluorescent lanthanide chelate complex is formed only when the non-fluorescent probes are hybridized to adjacent positions into the target DNA bringing the reporter moieties in close proximity. The complex is formed by self-assembled lanthanide chelate complementation where the antenna ligand is coordinated to the lanthanide ion captured in the chelate. The complementation probes based assays with time-resolved fluorescence measurement showed low background signal level and hence, relatively high nucleic acid detection sensitivity (low picomolar target concentration). Different lanthanide chelate structures were explored and a new cyclic seven dentate lanthanide chelate was found suitable for complementation probe method. It was also found to resist relatively high PCR reaction temperatures, which was essential for the PCR assay applications. A seven-dentate chelate with two unoccupied coordination sites must be used instead of a more stable eight- or nine-dentate chelate because the antenna ligand needs to be coordinated to the free coordination sites of the lanthanide ion. The previously used linear seven-dentate lanthanide chelate was found to be unstable in PCR conditions and hence, the new cyclic chelate was needed. The complementation probe PCR assay method showed high signal-to-background ratio up to 300 due to a low background fluorescence level and the results (threshold cycles) in real-time PCR were reached approximately 6 amplification cycles earlier compared to the commonly used FRET-based closed-tube PCR method. The suitability of the complementation probe method for different nucleic acid assay applications was studied. 1) A duplex complementation probe C. trachomatis PCR assay with a simple 10-minute urine sample preparation was developed to study suitability of the method for clinical diagnostics. The performance of the C. trachomatis assay was equal to the commercial C. trachomatis nucleic acid amplification assay containing more complex sample preparation based on DNA extraction. 2) A PCR assay for the detection of HLA-DQA1*05 allele, that is used to predict the risk of type 1 diabetes, was developed to study the performance of the method in genotyping. A simple blood sample preparation was used where the nucleic acids were released from dried blood sample punches using high temperature and alkaline reaction conditions. The complementation probe HLA-DQA1*05 PCR assay showed good genotyping performance correlating 100% with the routinely used heterogenous reference assay. 3) To study the suitability of the complementation probe method for direct measurement of the target organism, e.g., in the culture media, the complementation probes were applied to amplificationfree closed-tube bacteriophage quantification by measuring M13 bacteriophage ssDNA. A low picomolar bacteriophage concentration was detected in a rapid 20- minute assay. The assay provides a quick and reliable alternative to the commonly used and relatively unreliable UV-photometry and time-consuming culture based bacteriophage detection methods and indicates that the method could also be used for direct measurement of other micro-organisms. The complementation probe PCR method has a low background signal level leading to a high signal-to-background ratio and relatively sensitive nucleic acid detection. The method is compatible with simple sample preparation and it was shown to tolerate residues of urine, blood, bacteria and bacterial culture media. The common trend in nucleic acid diagnostics is to create easy-to-use assays suitable for rapid near patient analysis. The complementation probe PCR assays with a brief sample preparation should be relatively easy to automate and hence, would allow the development of highperformance nucleic acid amplification assays with a short overall assay time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La presencia de microorganismos patógenos en alimentos es uno de los problemas esenciales en salud pública, y las enfermedades producidas por los mismos es una de las causas más importantes de enfermedad. Por tanto, la aplicación de controles microbiológicos dentro de los programas de aseguramiento de la calidad es una premisa para minimizar el riesgo de infección de los consumidores. Los métodos microbiológicos clásicos requieren, en general, el uso de pre-enriquecimientos no-selectivos, enriquecimientos selectivos, aislamiento en medios selectivos y la confirmación posterior usando pruebas basadas en la morfología, bioquímica y serología propias de cada uno de los microorganismos objeto de estudio. Por lo tanto, estos métodos son laboriosos, requieren un largo proceso para obtener resultados definitivos y, además, no siempre pueden realizarse. Para solucionar estos inconvenientes se han desarrollado diversas metodologías alternativas para la detección identificación y cuantificación de microorganismos patógenos de origen alimentario, entre las que destacan los métodos inmunológicos y moleculares. En esta última categoría, la técnica basada en la reacción en cadena de la polimerasa (PCR) se ha convertido en la técnica diagnóstica más popular en microbiología, y recientemente, la introducción de una mejora de ésta, la PCR a tiempo real, ha producido una segunda revolución en la metodología diagnóstica molecular, como pude observarse por el número creciente de publicaciones científicas y la aparición continua de nuevos kits comerciales. La PCR a tiempo real es una técnica altamente sensible -detección de hasta una molécula- que permite la cuantificación exacta de secuencias de ADN específicas de microorganismos patógenos de origen alimentario. Además, otras ventajas que favorecen su implantación potencial en laboratorios de análisis de alimentos son su rapidez, sencillez y el formato en tubo cerrado que puede evitar contaminaciones post-PCR y favorece la automatización y un alto rendimiento. En este trabajo se han desarrollado técnicas moleculares (PCR y NASBA) sensibles y fiables para la detección, identificación y cuantificación de bacterias patogénicas de origen alimentario (Listeria spp., Mycobacterium avium subsp. paratuberculosis y Salmonella spp.). En concreto, se han diseñado y optimizado métodos basados en la técnica de PCR a tiempo real para cada uno de estos agentes: L. monocytogenes, L. innocua, Listeria spp. M. avium subsp. paratuberculosis, y también se ha optimizado y evaluado en diferentes centros un método previamente desarrollado para Salmonella spp. Además, se ha diseñado y optimizado un método basado en la técnica NASBA para la detección específica de M. avium subsp. paratuberculosis. También se evaluó la aplicación potencial de la técnica NASBA para la detección específica de formas viables de este microorganismo. Todos los métodos presentaron una especificidad del 100 % con una sensibilidad adecuada para su aplicación potencial a muestras reales de alimentos. Además, se han desarrollado y evaluado procedimientos de preparación de las muestras en productos cárnicos, productos pesqueros, leche y agua. De esta manera se han desarrollado métodos basados en la PCR a tiempo real totalmente específicos y altamente sensibles para la determinación cuantitativa de L. monocytogenes en productos cárnicos y en salmón y productos derivados como el salmón ahumado y de M. avium subsp. paratuberculosis en muestras de agua y leche. Además este último método ha sido también aplicado para evaluar la presencia de este microorganismo en el intestino de pacientes con la enfermedad de Crohn's, a partir de biopsias obtenidas de colonoscopia de voluntarios afectados. En conclusión, este estudio presenta ensayos moleculares selectivos y sensibles para la detección de patógenos en alimentos (Listeria spp., Mycobacterium avium subsp. paratuberculosis) y para una rápida e inambigua identificación de Salmonella spp. La exactitud relativa de los ensayos ha sido excelente, si se comparan con los métodos microbiológicos de referencia y pueden serusados para la cuantificación de tanto ADN genómico como de suspensiones celulares. Por otro lado, la combinación con tratamientos de preamplificación ha resultado ser de gran eficiencia para el análisis de las bacterias objeto de estudio. Por tanto, pueden constituir una estrategia útil para la detección rápida y sensible de patógenos en alimentos y deberían ser una herramienta adicional al rango de herramientas diagnósticas disponibles para el estudio de patógenos de origen alimentario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coccidiosis are the major parasitic diseases in poultry and other domestic animals including the domestic rabbit (Oryctolagus cuniculus). Eleven distinct Eimeria species have been identified in this host, but no PCR-based method has been developed so far for unequivocal species differentiation. In this work, we describe the development of molecular diagnostic assays that allow for the detection and discrimination of the 11 Eimeria species that infect rabbits. We determined the nucleotide sequences of the ITS1 ribosomal DNAs and designed species-specific primers for each species. We performed specificity tests of the assays using heterologous sets of primers and DNA samples, and no cross-specific bands were observed. We obtained a detection limit varying from 500 fg to 1 pg, which corresponds approximately to 0.8-1.7 sporulated oocysts, respectively. The test reported here showed good reproducibility and presented a consistent sensitivity with three different brands of amplification enzymes. These novel diagnostic assays will permit population surveys to be performed with high sensitivity and specificity, thus contributing to a better understanding of the epidemiology of this important group of coccidian parasites. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BackgroundDetection and quantification of hepatitis C virus (HCV) RNA is integral to diagnostic and therapeutic regimens. All molecular assays target the viral 5'-noncoding region (59-NCR), and all show genotype-dependent variation of sensitivities and viral load results. Non-western HCV genotypes have been under-represented in evaluation studies. An alternative diagnostic target region within the HCV genome could facilitate a new generation of assays.Methods and FindingsIn this study we determined by de novo sequencing that the 3'-X-tail element, characterized significantly later than the rest of the genome, is highly conserved across genotypes. To prove its clinical utility as a molecular diagnostic target, a prototype qualitative and quantitative test was developed and evaluated multicentrically on a large and complete panel of 725 clinical plasma samples, covering HCV genotypes 1-6, from four continents (Germany, UK, Brazil, South Africa, Singapore). To our knowledge, this is the most diversified and comprehensive panel of clinical and genotype specimens used in HCV nucleic acid testing (NAT) validation to date. The lower limit of detection (LOD) was 18.4 IU/ml (95% confidence interval, 15.3-24.1 IU/ml), suggesting applicability in donor blood screening. The upper LOD exceeded 10(-9) IU/ml, facilitating viral load monitoring within a wide dynamic range. In 598 genotyped samples, quantified by Bayer VERSANT 3.0 branched DNA (bDNA), X-tail-based viral loads were highly concordant with bDNA for all genotypes. Correlation coefficients between bDNA and X-tail NAT, for genotypes 1-6, were: 0.92, 0.85, 0.95, 0.91, 0.95, and 0.96, respectively; X-tail-based viral loads deviated by more than 0.5 log10 from 5'-NCR-based viral loads in only 12% of samples (maximum deviation, 0.85 log10). The successful introduction of X-tail NAT in a Brazilian laboratory confirmed the practical stability and robustness of the X-tail-based protocol. The assay was implemented at low reaction costs (US$8.70 per sample), short turnover times (2.5 h for up to 96 samples), and without technical difficulties.ConclusionThis study indicates a way to fundamentally improve HCV viral load monitoring and infection screening. Our prototype assay can serve as a template for a new generation of viral load assays. Additionally, to our knowledge this study provides the first open protocol to permit industry-grade HCV detection and quantification in resource-limited settings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aiming to improve the diagnosis of canine leishmaniasis (CanL) in an endemic area of the Northwest region of São Paulo State, Brazil, the efficacy of parasitological, immunological and molecular diagnostic methods were studied. Dogs with and without clinical sips of the disease and positive for Leishmania, by direct parasite identification on lymph node smears and/or specific antibody detection by ELISA, were selected for the study. According to the clinical signs, 89 dogs attending the Veterinary Hospital of UNESP in Aracatuba (SP, Brazil) were divided into three groups: symptomatic (36%), oligosymptomatic (22%) and asymptomatic (22%). Twenty-six dogs from an area non-endemic for CanL were used as negative controls (20%). Fine-needle aspiration biopsies (FNA) of popliteal lymph nodes were collected and Diff-Quick (R)-stained for optical microscopy. Direct immumofluorescence, immunocytochemistry and parasite DNA amplification by PCR were also performed. After euthanasia, fragments of popliteal lymph nodes, spleen, bone marrow and liver were collected and processed for HE and immunohistochemistry. Parasite detection by both HE and immunohistochemistry was specifically more effective in lymph nodes, when compared with the other organs. Immunolabeling provided higher sensitivity for parasite detection in the tissues. In the symptomatic group, assay sensitivity was 75.61% for direct parasite search on Diff-Quick (R)-stained FNAs, 92.68% for direct immunofluorescence, 92.68% for immunocytochemistry and 100% for PCR; the corresponding values in the other clinical groups were: 32, 60, 76 and 96% (oligosymptomatic), and 39.13, 73.91, 100 and 95.65% (asymptomatic). Results of the control animals from the CanL non-endemic area were all negative, indicating that the methods used were 100% specific. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia - IBILCE

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O vírus da Hepatite E (HEV) é um RNA-vírus entericamente transmissível do gênero Hepevirus causador de hepatite aguda em humanos que apresenta ampla distribuição em diversas regiões do mundo. Suínos são relatados como a principal fonte de infecção para humanos relacionadas aos genótipos 3 e 4 em regiões consideradas não-endêmicas. Neste sentido, o presente estudo teve como objetivo demonstrar a infecção pelo HEV em suínos no Estado do Pará através de métodos sorológicos e moleculares aplicados a amostras de soro, fezes e fígado de 151 suínos abatidos na região Metropolitana de Belém. A investigação sorológica abrangeu a pesquisa de anticorpos anti-HEV das classes IgM e IgG e o diagnóstico molecular inclui a detecção do HEV-RNA, sequenciamento nucleotídico e análise filogenética das sequências obtidas. Como resultado, não foram detectados anticorpos anti- HEV IgM e a prevalência de animais sororeativos para IgG foi de 8,6% (13/151). A detecção molecular amplificou fragmentos do HEV genoma em 4,8% (22/453) das amostras testadas e a prevalência de animais positivos a pelo menos uma amostra foi de 9,9% (15/151). A análise filogenética concluiu que todas as sequências analisadas pertencem ao genótipo 3 do vírus, descrito como zoonótico. Foram identificados os subtipos 3c e 3f ocorrendo simultaneamente estre as amostras, de acordo com as duas regiões do genoma amplificadas. Estes resultados constam como as primeiras evidências sorológicas e moleculares da circulação do HEV entre suínos no Norte do Brasil e também como a primeira detecção e genotipagem do HEV na região.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chlamydophila psittaci is a bacterium that causes respiratory or systemic disease in birds and humans. Owing to the risk of transmission from asymptomatic birds to humans, the objective of this study was to detect the presence of Chlamydophila spp. in asymptomatic birds. Four hundred and three fecal samples or cloacal swabs were collected from domestic, wild or exotic birds. The 403 samples were examined by real time PCR specific for the 16S subunit of rRNA gene using SsoFastEvaGreen®SupermixTM (Bio-Rad) and melting curve analysis. Hemi-nested PCR specific for the OMP-A gene, accomplished in real-time PCR positive samples, was followed by sequencing of the amplified fragments to determine the genotype of C. psittaci. Real-time PCR was positive in 17 (4.21%) samples. Hemi-nested PCR revealed positivity in two samples previously positive by real-time PCR. Sequencing of the fragment amplified by hemi-nested PCR allowed for the identification of genotype A of C. psittaci in one sample. The results of this experiment show that the real-time PCR targeting the 16S rRNA gene followed by melting curve analysis can be used for diagnosis of Chlamydophila sp. in fecal samples of asymptomatic birds. The classification of the Chlamydophila species and the genotype of C. psittaci must be accomplished by PCR targeting the ompA gene and sequencing of the amplified fragments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Sarcocystis genus includes obligatory two-host life cycle protozoan parasites. It is the most numerous of the six genera of the Sarcocystidae family. The infection caused by parasites of this genus is a zoonotic and cosmopolitan disease known as sarcosistosis or sarcosporidiosis. The sarcositosis though frequently asymptomatic in its definitive hosts can be fatal in its intermediate hosts. The usual diagnoses of sarcosistosis takes place through a histological demonstration of schizonts in blood vessels and organs, and the presence of cysts in muscle tissue by necropsy or biopsy, this second method still more common and based on morphological features of the sarcocyst. However, these methods can be inadequate to a precise identification of the infector species once that, besides the genus being of numerous species, these often present similar morphological features. Another factor that makes the diagnostic more difficult is the non specificity of some Sacocystis species to their hosts. Consequently, molecular diagnostic methods have been used in order to identify the infector species and the parasite specific biological cycles, demonstrating also new species and coevolutive aspects between parasite and host. Among the most employed molecular techniques the Polimerase Chain Reaction (PCR), the nested-PCR and the Restriction Fragment Length Polymorphism (RFLP) stands out

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The tall cell (TC) variant of papillary thyroid carcinoma (PTC) has an unfavorable prognosis. The diagnostic criteria remain inconsistent, and the role of a minor TC component is unclear. Molecular diagnostic markers are not available; however, there are two potential candidates: BRAF V600E and telomerase reverse transcriptase (TERT) promoter mutations. Using a novel approach, we enriched a collective with PTCs that harbored an adverse outcome, which overcame the limited statistical power of most studies. This enabled us to review 125 PTC patients, 57 of which had an adverse outcome. The proportion of TCs that constituted a poor prognosis was assessed. All of the tumors underwent sequencing for TERT promoter and BRAF V600E mutational status and were stained with an antibody to detect the BRAF V600E mutation. A 10% cutoff for TCs was significantly associated with advanced tumor stage and lymph node metastasis. Multivariate analysis showed that TCs above 10% were the only significant factor for overall, tumor-specific, and relapse-free survival. Seven percent of the cases had a TERT promoter mutation, whereas 61% demonstrated a BRAF mutation. The presence of TC was significantly associated with TERT promoter and BRAF mutations. TERT predicted highly significant tumor relapse (P<0.001). PTCs comprised of at least 10% TCs are associated with an adverse clinical outcome and should be reported accordingly. BRAF did not influence patient outcome. Nevertheless, a positive status should encourage the search for TCs. TERT promoter mutations are a strong predictor of tumor relapse, but their role as a surrogate marker for TCs is limited.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Since the discovery of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, diagnostic protocols were quickly published and deployed globally. OBJECTIVES: We set out to assess the quality of MERS-CoV molecular diagnostics worldwide. STUDY DESIGN: Both sensitivity and specificity were assessed using 12 samples containing different viral loads of MERS-CoV or common coronaviruses (OC43, 229E, NL63, HKU1). RESULTS: The panel was sent to more than 106 participants, of which 99 laboratories from 6 continents returned 189 panel results.Scores ranged from 100% (84 laboratories) to 33% (1 laboratory). 15% of respondents reported quantitative results, 61% semi-quantitative (Ct-values or time to positivity) and 24% reported qualitative results. The major specific technique used was real-time RT-PCR using the WHO recommended targets upE, ORF1a and ORF1b. The evaluation confirmed that RT-PCRs targeting the ORF1b are less sensitive, and therefore not advised for primary diagnostics. CONCLUSIONS: The first external quality assessment MERS-CoV panel gives a good insight in molecular diagnostic techniques and their performances for sensitive and specific detection of MERS-CoV RNA globally. Overall, all laboratories were capable of detecting MERS-CoV with some differences in sensitivity. The observation that 8% of laboratories reported false MERS-CoV positive single assay results shows room for improvement, and the importance of using confirmatory targets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since the discovery of the JAK2 V617F mutation in the majority of the myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia and primary myelofibrosis ten years ago, further MPN-specific mutational events, notably in JAK2 exon 12, MPL exon 10 and CALR exon 9 have been identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. Whilst many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation of the appropriate laboratory methodology to achieve this diagnosis similarly vital. The advantages and limitations of these approaches in identifying and quantitating the common MPN-associated mutations are considered herein with particular regard to their clinical utility. The evolution of molecular diagnostic applications and platforms has occurred in parallel with the discovery of MPN-associated mutations, and it therefore appears likely that emerging technologies such as next-generation sequencing and digital PCR will in the future play an increasing role in the molecular diagnosis of MPN. Accepted for publication 30 April 2015 doi:10.1111/ejh.12578